中国腐蚀与防护学报, 2022, 42(2): 211-217 DOI: 10.11902/1005.4537.2021.106

研究报告

海水环境中组合电位极化对铁氧化菌腐蚀的影响

李振欣, 吕美英, 杜敏,

中国海洋大学化学化工学院 海洋化学理论与工程技术教育部重点实验室 青岛 266100

Effect of Combined Potential Polarization on Corrosion of X65 Steel in Seawater Inoculated with Iron Oxiding Bacteria

LI Zhenxin, LV Meiying, DU Min,

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China

通讯作者: 杜敏,E-mail:ssdm99@ouc.edu.cn,研究方向为海洋腐蚀与防护技术

收稿日期: 2021-05-12   修回日期: 2021-05-24  

基金资助: 国家自然科学基金.  51871204

Corresponding authors: DU Min, E-mail:ssdm99@ouc.edu.cn

Received: 2021-05-12   Revised: 2021-05-24  

作者简介 About authors

李振欣,男,1995年生,硕士生

摘要

采用电化学测试、扫描电镜、激光共聚焦显微镜、Raman光谱等手段研究了-850 mV (vs. SCE,下同) 转-1050 mV和-1050 mV转-850 mV组合电位阴极极化对X65钢在含铁氧化菌 (IOB) 的海水中腐蚀的影响。结果表明:两种组合电位极化都对IOB腐蚀有一定抑制作用;极化与开路电位下X65钢腐蚀产物种类差别不大,含量有区别。-1050 mV极化可以抑制IOB附着但不能完全去除已形成的生物膜,这是-1050 mV转-850 mV极化保护效果优于-850 mV转-1050 mV极化的原因。

关键词: 微生物腐蚀 ; 铁氧化菌 ; 组合电位阴极极化 ; 海水环境 ; 附着

Abstract

The effect of stepwise cathodic polarizations with two potentials: either -850 mV (vs. SCE) then -1050 mV or -1050 mV then -850 mV on the corrosion behavior of X65 steel in the aged Qingdao seawater inoculated with iron oxidizing bacteria was studied by means of electrochemical techniques, scanning electron microscopy and confocal laser scanning microscopy and Raman spectroscopy. The results show that both of the two stepwise polarizations all can inhibit the IOB induced corrosion. There is little difference in the composition but variation in the content of each constituent of corrosion products formed on X65 steel in the aged Qingdao seawater inoculated with iron oxidizing bacteria by open circuit potential as well as by applying either of the two stepwise polarizations respectively. The polarization by -1050 mV can inhibit IOB adhesion, but cannot completely remove the formed biofilm, which may be the reason why the stepwise polarization by -1050 mV then -850 mV has better protection effect than that by -850 mV then -1050 mV.

Keywords: microbiologically influenced corrosion ; iron-oxidizing bacteria ; combined potential cathodic polarization ; seawater environment ; adhering

PDF (9692KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李振欣, 吕美英, 杜敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响. 中国腐蚀与防护学报[J], 2022, 42(2): 211-217 DOI:10.11902/1005.4537.2021.106

LI Zhenxin, LV Meiying, DU Min. Effect of Combined Potential Polarization on Corrosion of X65 Steel in Seawater Inoculated with Iron Oxiding Bacteria. Journal of Chinese Society for Corrosion and Protection[J], 2022, 42(2): 211-217 DOI:10.11902/1005.4537.2021.106

海洋具有丰富的自然资源和经济价值,并具有巨大的国防战略意义,国家正不断推进海洋资源的开发利用。X65钢由于具有耐腐蚀性好、强度高、抗断裂韧性优良、价格实惠等优点,被广泛应用在石油、天然气运输中[1]。但海洋环境复杂恶劣,海洋构筑物面临着严重的腐蚀问题,微生物腐蚀是其中最普遍、最复杂的类型。据统计,微生物腐蚀约占金属腐蚀的20%[2],且极易造成金属材料穿孔,因此带来巨大的安全风险。

在众多腐蚀微生物中,铁氧化菌 (IOB) 是腐蚀最严重的微生物之一。在海洋环境中,会迅速附着在材料表面[3,4],短时间内会抑制其他微生物的附着。同时,IOB形成的生物膜会促进厌氧环境的形成,从而促进其他厌氧菌的生长[5-7]。它们可以从亚铁离子氧化成铁离子的过程中获得能量来维持生命活动[8],氧化速率远高于非生物氧化[9,10]。这会导致氢氧化铁的沉积,不均匀的覆盖在材料表面,形成氧浓差电池,促进点蚀[11-14]。目前,研究表明,IOB的存在可以加速金属溶解和局部腐蚀[15-18]

阴极保护在海洋构筑物被广泛采用,它不仅可以抑制腐蚀的发生,对微生物本身也具有一定的抑制作用。但对于微生物存在下的阴极保护电位选择仍存在争议[19-22]。在实际工况条件下,由于外界环境的不断变化,阴极保护电位也往往会发生偏移,难以保持稳定。在之前的研究中我们发现[23],较负的极化电位具有更好的保护作用。那么,在较正的电位下发生IOB腐蚀后,较负的电位能否起到修复作用;在较负的电位下保护良好的状况下,在较正的电位下还能否保持一定的抗腐蚀能力等问题对研究阴极保护的抑菌机理、制定适合的阴极保护规范具有重要的理论价值和应用价值。

1 实验方法

本文所用试样为X65管线钢,化学成分 (质量分数,%) 为:C 0.03,Si 0.17,Mn 1.51,P 0.02,Ni 0.17,Cu 0.04,Mo 0.16,Nb 0.06,Al 0.02,Ti 0.01,Fe余量。将10 mm×10 mm×3 mm尺寸的试样用铜导线焊接,再用环氧树脂密封,只保留10 mm×10 mm工作面。依次用400#、800#、1000#、2000#的SiC砂纸对试样的每个工作面进行打磨,再用无水乙醇清洗,干燥。使用前在紫外灯下照射试样30 min灭菌。

所用培养基用青岛小麦岛附近天然陈化海水配置,成分 (g/L) 为:K2HPO4 0.5,MgSO4·7H2O 0.5,NaNO3 0.5,(NH4)2SO4 0.5,CaCl2 0.2,柠檬酸铁铵10。全培养基用于IOB培养与计数,细菌计数采用最大可能数法 (MPN)。

为减小培养基成分对腐蚀的影响,用陈化海水将培养基稀释20倍,得到实验用腐蚀介质。培养基与腐蚀介质均用2 mol/L的NaOH调节pH至8.1±0.1,并用高压蒸汽灭菌锅高温121 ℃下灭菌20 min。实验前,向灭菌后的培养基中接种铁氧化菌,在恒温培养箱 (30 ℃) 中培养5 d,按1∶100体积比接种到腐蚀体系中进行实验,实验温度用恒温水浴锅控制在(25±1) ℃。

在海洋环境中,碳钢的阴极保护电位一般在-800~-1050 mVvs.Ag/AgCl/海水电极范围内[24] (即-806~-1056 mVvs. SCE),当有微生物存在时,保护电位往往需要适当负移。但保护电位负于-1050 mV时会大大增加析氢的风险,所以本文选择较正的-850 mVvs.SCE与阴极保护极限电位-1050 mV组合。最终选用X65钢在有菌体系的开路电位 (由于腐蚀产物层的形成,开路电位正移,稳定后约-710 mVvs.SCE下同)、-850 mV转-1050 mV、-1050 mV转-850 mV,在第3 d,IOB生长阶段进入稳定期[15,25]时进行转换。

电化学测试采用三电极体系,工作电极为X65钢,辅助电极为钛基底贵金属氧化物电极,参比电极为饱和甘汞电极 (SCE)。采用Gamry Reference 600工作站进行相关电化学测试。在测试前1 h断开极化电位,等待体系开路电位 (OCP) 稳定后进行测试。测试参数:在开路电位下施加电压扰动信号幅值10 mV,扫描频率范围为105~10-2 Hz。

浸泡7 d后,从腐蚀体系中取出试样,用5 mL注射器吸取灭菌冷却后的磷酸盐pH缓冲溶液,轻轻冲洗表面3次以除去剩余的培养基和浮游细菌,放入5%戊二醛固定液中固定2 h,依次用10%、30%、50%、70%、90%、95%无水乙醇脱水10 min,再放入100%无水乙醇中脱水20 min,用于扫描电子显微镜 (SEM,ZEISS-Gemini 300) 观察。

用蒸馏水清洗干净待测试样表面,用无水乙醇浸泡3分钟以出去表面残余的水,干燥后用于表面拉曼测试 (Thermo Fisher Scientific-DXR Microscope)。

用蒸馏水冲洗掉表面残留溶液,然后用除锈液 (20 g六次甲基四胺溶于1 L 1∶1 (V/V) 的盐酸中) 浸泡3 min,取出后再用蒸馏水冲洗干净,放入无水乙醇中浸泡5 min后干燥,用于激光共聚焦显微镜 (Keyence- VK-X200) 观察。

2 结果与讨论

2.1 IOB生长情况

IOB在pH为8.1的海水中生长曲线如图1所示。看出,1~2 d时IOB迅速生长,为对数生长期,之后进入稳定期,数量较为稳定。6 d后由于营养物质消耗,数量有所减少。

图1

图1   海水环境中铁氧化菌的生长曲线

Fig.1   Growth curve of IOB in seawater enriron ment


图2为3 d时不同电位条件下溶液中IOB数量。可以看到,随着初始电位的负移,IOB数量有所减少。-850转-1050 mV极化下IOB数量相差不大,说明-850 mV极化对IOB的抑制效果较弱,IOB仍能在电极表面附着并形成生物膜。而-1050 mV转-850 mV极化明显抑制了IOB的数量。

图2

图2   不同阴极电位下3 d时溶液中IOB数量

Fig.2   Amount of IOB in the solution after 3 d at different cathodic potentials


2.2 表面形貌与成分分析

图3为开路电位和-850 mV转-1050 mV、-1050 mV转-850 mV两种组合极化电位下,X65钢浸泡7 d时的表面形貌图。可以看到,3种条件下腐蚀产物都未完全覆盖试样表面。在开路电位条件下,试样表面十分杂乱,附着有细菌和大量疏松的腐蚀产物。-850 mV转-1050 mV条件下,腐蚀产物虽然有所减少,但仍能观察到较明显的点蚀痕迹。-1050 mV转-850 mV条件下,试样表面附着的腐蚀产物较少且致密,没有发现明显的杆状细菌。这可能是由于-850 mV极化对IOB的抑制较小,前3 d时IOB在试样表面附着并形成生物膜。后4 d施加的-1050 mV极化不能完全去除已形成的生物膜,同时,大量的腐蚀产物造成电极表面电位分布不均,更减弱了阴极极化的抑菌效果。先施加-1050 mV极化时,不仅抑制了IOB的附着,还大量杀死了处于对数生长期的细菌,抑制了体系中IOB数量的增长,大大减轻了IOB造成的腐蚀;再施加-850 mV极化,由于体系中IOB数量较少,对腐蚀的促进不明显。

图3

图3   不同组合电位下浸泡7 d后X65钢表面形貌图

Fig.3   Surface morphologies of X65 steel after immersion for 7 d under different combined potentials: (a) OCP, (b) -850 mV to -1050 mV polarization, (c) -1050 mV to -850 mV polarization


去除腐蚀产物后,利用激光共聚焦显微镜观察试样基底,如图4所示。可以看到,3种条件下,试样表面都出现了明显的蚀坑。阴极极化的施加使蚀坑深度明显减少。-1050 mV转-850 mV条件下,试样基底表面较为光滑,还能看到打磨的痕迹,坑深也显著低于-850 mV转-1050 mV。说明两组组合电位极化对IOB腐蚀都有一定抑制作用,而-1050 mV转-850 mV极化保护效果优于-850 mV转-1050 mV,与SEM观察结果相符。

图4

图4   不同阴极电位下极化7 d后去除试样表面腐蚀产物后基底形貌

Fig.4   Surface morphologies of X65 steel after removing corrosion products formed during polarization for 7 d at diff-erent cathodic potentials: (a) OCP, (b) -850 to -1050 mV, (c) -1050 to -850 mV


利用激光共聚焦显微镜对图4中试样表面进行测量,随机选取4个区域测量后计算平均值,数据列于表1中。Npit为每平方毫米蚀坑个数,davg为蚀坑平均深度,dmax为蚀坑最大深度,Davg为蚀坑等效平均直径。可以看到,两种极化条件下,试样表面蚀坑数量、平均深度、最大深度、等效直径均小于开路电位条件下的。而在两种组合极化条件下,虽然平均蚀坑深度相近,但-850 mV转-1050 mV极化组合电位条件下的蚀坑数、最大坑深、平均蚀坑直径都要高于-1050转-850 mV极化组合电位条件下的。

表1   X65钢在不同阴极电位下极化7 d后去除腐蚀产物的激光共聚焦显微镜测量数据

Table 1  CLSM measurement data of the surface of X65 steel after removing corrosion products formed during polarization for 7 d at different cathodic potentials

ConditionNpit / 1/mm2davg / μmdmax / μmDavg / μm
OCP45.25-1.56-12.8524.92
-850 to -1050 mV27.50-1.47-8.8221.07
-1050 to -850 mV11.75-1.48-4.7720.47

新窗口打开| 下载CSV


对X65钢在不同条件下浸泡7 d后的腐蚀产物进行Raman测试,结果如图5。从分析结果可以看出,3种条件下腐蚀产物种类基本相同,主要由FeOOH、Fe2O3、Fe3O4组成,只是含量有差别。Refait等[26]研究了阴极保护下碳钢在海水中的腐蚀产物,也发现极化条件下的腐蚀产物与开路电位条件下的腐蚀产物种类基本相同。相比开路电位,极化条件下的电极表面pH上升导致CaCO3和Mg(OH)2形成较快,在约1100和420 cm-1出现一个较弱的峰。

图5

图5   不同阴极电位下极化7 d后X65钢表面Raman谱图

Fig.5   Raman spectra of X65 steel after polarization for 7 d at different cathodic potentials: (a) OCP, (b) -850 to -1050 mV, (c) -1050 to -850 mV


2.3 电化学特征

在测试前1 h断开极化,待体系开路电位稳定后对试样进行电化学阻抗测试,连续测试7 d,测试结果如图6所示。从图6a中可以看出,1~2 d时容抗弧半径逐渐增大,3 d之后保持相对稳定并不断波动。从图6b可以看到,-850转-1050 mV组合电位极化下,1~3 d时X65钢容抗弧随浸泡时间延长而增大,第4 d时突然下降后保持稳定;而-1050转-850 mV组合电位极化下,容抗弧在1~3 d逐渐减小,4~6 d逐渐上升,第7 d时又再次下降。

图6

图6   不同阴极电位下极化不同时间后X65钢的电化学阻抗图

Fig.6   EIS of X65 steel after polarization for different time under different cathodic polarization potentials: (a1~a3) OCP, (b1~b3) -850 to -1050 mV, (c1~c3) -1050 to -850 mV


由于IOB的存在,试样表面有生物膜、腐蚀产物膜形成,本文选用图7的等效电路对阻抗数据进行拟合,RfCf随时间变化绘与图8中。其中,Rs为溶液电阻,Qdl为双电层电容,Rct为电荷转移电阻,Qf为常相位角元件ZCPE=Y0-1(jw)-nCf为膜电容,n为弥散系数,Rf为膜电阻。

图7

图7   电化学阻抗谱拟合等效电路图

Fig.7   Equivalent circuit diagram for fitting EIS


图8

图8   电化学阻抗谱拟合参数随时间变化曲线

Fig.8   Time dependences of fitting parameters of EIS: (a) Rf, (b) Cf ,(c) n


图8a所示,OCP条件下,IOB可以在电极表面附着形成具有保护作用的生物膜[15,27]Rf不断增大。-850转-1050 mV组合电位极化下,因为-850 mV极化抑制效果较弱,IOB仍能在电极表面附着,Rf迅速上升;3 d后,-1050 mV极化的施加破坏了电极表面部分已形成的生物膜,Rf显著下降;之后由于极化导致的pH上升,逐渐形成钙镁沉积层,Rf缓慢上升。而在-1050 mV转-850组合电位极化下,由于IOB附着被抑制,Rf较小且变化不大;4 d时由于极化电位变正,IOB迅速附着生长,Rf逐渐增大;7 d时由于生物膜局部脱落,Rf减小。

图8b和c中,开路电位下,由于IOB在电极表面附着,生物膜面积不断增大,nCf不断增大。在-850转-1050 mV极化下,3 d后由于电位变负,电极表面生物膜被部分破坏,膜层变薄且不完整,Cf迅速增大,n减小。而在-1050转-850 mV极化下,3~5 d时由于电位变正,IOB受到的抑制减弱,生物膜逐渐变厚,Cf逐渐减小。但电化学测试结果不能表征试样的点蚀。

结合试样表面形貌和成分分析结果,在开路电位下,试样表面有细菌附着,腐蚀严重且有明显的坑蚀,产物成分主要为FeOOH、Fe2O3、Fe3O4,为粘附腐蚀产物的生物膜,生物膜的存在使Rf较大,但保护作用较弱。在极化条件下,特别是-1050转-850 mV极化下,试样表面细菌数量明显减少,产物膜中α-FeOOH明显含量下降,并有少量CaCO3和Mg(OH)2生成,说明生物膜的生长受到抑制,钙镁沉积层逐渐形成,由于钙镁沉积层未完全覆盖表面导致Rf小于开路电位条件下,但保护效果较好,抑制了点蚀的发生。

不同阴极电位下电极表面状态如图9所示。在开路电位下,IOB迅速在电极表面附着成膜,诱发点蚀[28]。在-850 mV转-1050 mV极化下,如图9b,-850 mV极化对IOB抑制效果较弱,生成的少量钙质沉积层也不能起到良好的保护作用,电极表面有点蚀发生。当电位负移后,-1050 mV部分破坏了已形成的生物膜,但并未完全去除,仍附着的IOB继续促进点蚀的发生[29,30]。而在图9c中,先施加的-1050 mV极化较好的抑制了IOB的生长与附着,电极表面只有少量IOB附着,生成的钙镁沉积层具有一定的保护作用。当电位正移后,溶液中的IOB数量较少,同时,已形成的钙镁沉积层阻碍了IOB与试样直接接触,所以试样腐蚀较轻。

图9

图9   不同阴极电位下X65钢表面状态图

Fig.9   Surface state diagrams of X65 steel under different cathodic polarization potentials: (a) OCP, (b) -850 mV to -1050 mV, (c) -1050 mV to -850 mV


3 结论

(1) 两种组合电位阴极极化都对IOB腐蚀有抑制作用,X65钢表面仍有点蚀发生。

(2) 极化与开路电位条件下X65钢试样表面腐蚀产物种类基本相同,但极化条件下试样表面有CaCO3和Mg(OH)2生成。

(3) -1050 mV转-850 mV极化组合电位的保护效果要优于-850 mV转-1050 mV极化,这可能是由于前期施加-1050 mV极化可以有效抑制IOB的附着与生长,从而抑制了IOB腐蚀的发生。但后期施加的-1050 mV极化不能完全去除已形成的生物膜,不均匀的生物膜导致电极界面电位分布不均,IOB仍能在电极表面电位较正处生长,从而促进腐蚀。

参考文献

Xu Z.

Study on constitutive relation and failure criteria of X65 pipeline steel

[J]. Petro. Eng. Constr., 2014, 40(3): 23

[本文引用: 1]

徐震.

X65管线钢的本构关系及失效判据研究

[J]. 石油工程建设, 2014, 40(3): 23

[本文引用: 1]

Shi X B, Yang C G, Yan W, et al.

Microbiologically influenced corrosion of pipeline steels

[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 9

[本文引用: 1]

史显波, 杨春光, 严伟.

管线钢的微生物腐蚀

[J]. 中国腐蚀与防护学报, 2019, 39: 9

[本文引用: 1]

McBeth J M, Little B J, Ray R I, et al.

Neutrophilic iron-oxidizing “Zetaproteobacteria” and mild steel corrosion in nearshore marine environments

[J]. Appl. Environ. Microbiol., 2011, 77: 1405

[本文引用: 1]

McBeth J M, Emerson D.

In situ microbial community succession on mild steel in estuarine and marine environments: Exploring the role of iron-oxidizing bacteria

[J]. Front. Microbiol., 2016, 7: 767

[本文引用: 1]

Liu H W, Fu C Y, Gu T Y, et al.

Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water

[J]. Corros. Sci., 2015, 100: 484

[本文引用: 1]

Zhang H Y, Tian Y M, Wan J M, et al.

Study of biofilm influenced corrosion on cast iron pipes in reclaimed water

[J]. Appl. Surf. Sci., 2015, 357: 236

Lv M Y, Du M, Li X, et al.

Mechanism of microbiologically influenced corrosion of X65 steel in seawater containing sulfate-reducing bacteria and iron-oxidizing bacteria

[J]. J. Mater. Res. Technol., 2019, 8: 4066

[本文引用: 1]

Emerson D, Moyer C.

Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH

[J]. Appl. Environ. Microbiol., 1997, 63: 4784

[本文引用: 1]

Sung W, Morgan J J.

Kinetics and product of ferrous iron oxygenation in aqueous systems

[J]. Environ. Sci. Technol., 1980, 14: 561

[本文引用: 1]

Sobolev D, Roden E E.

Characterization of a neutrophilic, chemolithoautotrophic Fe(II)-oxidizing β-proteobacterium from freshwater wetland sediments

[J]. Geomicrobiol. J., 2004, 21: 1

[本文引用: 1]

Starosvetsky D, Armon R, Yahalom J, et al.

Pitting corrosion of carbon steel caused by iron bacteria

[J]. Int. Biodeterior. Biodegrad., 2011, 47: 79

[本文引用: 1]

Starosvetsky J, Starosvetsky D, Pokroy B, et al.

Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling

[J]. Corros. Sci., 2008, 50: 540

Moradi M, Duan J, Ashassi-Sorkhabi H, et al.

De-alloying of 316 stainless steel in the presence of a mixture of metal-oxidizing bacteria

[J]. Corros. Sci., 2011, 53: 4282

Miot J, Benzerara K, Morin G, et al.

Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

[J]. Geochim. Cosmochim. Acta, 2009, 73: 696

[本文引用: 1]

Yue Y Y, Lv M Y, Du M.

The corrosion behavior and mechanism of X65 steel induced by iron-oxidizing bacteria in the seawater environment

[J]. Mater. Corros., 2019, 70: 1852

[本文引用: 3]

Wang H, Ju L K, Castaneda H, et al.

Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans

[J]. Corros. Sci., 2014, 89: 250

Wang K T, Chen F, Li H, et al.

Corrosion behavior of L245 pipeline steel in shale gas fracturing produced water containing iron bacteria

[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 248

王坤泰, 陈馥, 李环.

铁细菌对L245钢腐蚀行为的影响研究

[J]. 中国腐蚀与防护学报, 2021, 41: 248

Lv Y L, Liu H W, Xiong F P, et al.

Corrosion behavior of X80 pipeline steel in oil-field produced water containing iron oxidizing bacteria

[J]. Corros. Sci. Prot. Technol., 2017, 29: 343

[本文引用: 1]

吕亚林, 刘宏伟, 熊福平.

铁氧化菌对X80管线钢腐蚀行为的影响

[J]. 腐蚀科学与防护技术, 2017, 29: 343

[本文引用: 1]

Esquivel R G, Olivares G Z, Gayosso M J H, et al.

Cathodic protection of XL 52 steel under the influence of sulfate reducing bacteria

[J]. Mater. Corros., 2011, 62: 61

[本文引用: 1]

Guan F, Zhai X F, Duan J Z, et al.

Influence of sulfate-reducing bacteria on the corrosion behavior of high strength steel EQ70 under cathodic polarization

[J]. PLoS One, 2016, 11: e0162315

Sun C, Xu J, Wang F H, et al.

Effects of SRB on cathodic protection of Q235 steel in soils

[J]. Mater. Corros., 2010, 61: 762

Permeh S, Lau K, Tansel B, et al.

Surface conditions for microcosm development and proliferation of SRB on steel with cathodic corrosion protection

[J]. Constr. Build. Mater., 2020, 243: 118209

[本文引用: 1]

Lv M Y, Yue Y Y, Li Z X, et al.

Effect of cathodic polarization on corrosion behavior of X65 steel in seawater containing iron-oxidizing bacteria

[J]. Int. J. Electrochem. Sci., 2021, 16: 1

[本文引用: 1]

Det Norske Veritas.

DNV-RP-B401

[R]. Cathodic Protection Design, 2005

[本文引用: 1]

Liu H W, Liu H F.

Research progress of corrosion of steels induced by iron oxidizing bacteria

[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 195

[本文引用: 1]

刘宏伟, 刘宏芳.

铁氧化菌引起的钢铁材料腐蚀研究进展

[J]. 中国腐蚀与防护学报, 2017, 37: 195

[本文引用: 1]

Refait P, Jeannin M, Sabot R, et al.

Electrochemical formation and transformation of corrosion products on carbon steel under cathodic protection in seawater

[J]. Corros. Sci., 2013, 71: 32

[本文引用: 1]

Gunasekaran G, Chongdar S, Gaonkar S N, et al.

Influence of bacteria on film formation inhibiting corrosion

[J]. Corros. Sci., 2004, 46: 1953

[本文引用: 1]

Niu Y, Lin Z L, Lin G J, et al.

Research on corrosion behavior of Q235 steel in marine iron-oxidizing bacteria

[J]. Mar. Environ. Sci., 2014, 33: 739

[本文引用: 1]

牛艳, 林振龙, 林国基.

Q235钢在海洋铁细菌作用下的腐蚀行为研究

[J]. 海洋环境科学, 2014, 33: 739

[本文引用: 1]

Li X B, Wang J.

Effect of cathodic polarization on microbial film in seawater environment

[J]. Equip. Environ. Eng., 2004, 1(6): 27

[本文引用: 1]

李相波, 王佳.

阴极极化对金属电极表面微生物膜的影响

[J]. 装备环境工程, 2004, 1(6): 27

[本文引用: 1]

Dargahi M, Hosseinidoust Z, Tufenkji N, et al.

Investigating electrochemical removal of bacterial biofilms from stainless steel substrates

[J]. Colloid. Surf., 2014, 117B: 152

[本文引用: 1]

/