Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (4): 493-500    DOI: 10.11902/1005.4537.2021.004
  研究报告 本期目录 | 过刊浏览 |
4种耐蚀合金在超超临界锅炉烟气冷凝液中的腐蚀行为研究
赵康, 李晓琦, 王铭滔, 刘宇茜, 姜华伟, 杨启容, 王力伟()
青岛大学机电工程学院 青岛 266071
Corrosion Behavior of Four Corrosion-resistant Alloys in Ultra-supercritical Boiler Flue Gas Condensate
ZHAO Kang, LI Xiaoqi, WANG Mingtao, LIU Yuxi, JIANG Huawei, YANG Qirong, WANG Liwei()
School of Electromechanic Engineering, QingDao University, Qingdao 266071, China
全文: PDF(4628 KB)   HTML
摘要: 

通过开路电位、动电位极化曲线、电化学阻抗谱以及XPS测试研究了316L、254SMo、C276和Inconel 740H 4种耐蚀合金在超超临界锅炉烟气冷凝液中的腐蚀行为。结果表明,4种耐蚀合金在所研究烟气冷凝液中均表现出钝化特性,但是由于合金元素及其含量的差异,环境中的酸根离子对表面钝化膜的破坏作用存在差异。其中254SMo钢由于相对较高的Cr、Ni、Mo含量表现出最优的钝化性能,其钝化电流密度明显低于其他3种合金,极化电阻也较高,钝化膜中较高的Cr,以及适量的Ni、Mo是提高钝化膜质量的关键因素。

关键词 耐蚀合金烟气冷凝液腐蚀钝化    
Abstract

The corrosion behavior of four anticorrosion alloys, including 316L stainless steel, 254SMo stainless steel, C276 alloy and Inconel 740H alloy, in an artificial flue-gas condensate of pH 1.09 which aims to simulate the flue-gas condensate of ultra-supercritical boilers, is studied by means of open-circuit potential- and potentiodynamic polarization curve-measurement, as well as electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. It shows that all the four alloys exhibit passivation characteristics in the artificial flue-gas condensate. The deterioration process of the formed passive films by the aggressive ions in the flue-gas condensate is different for the four alloys with individually unique chemical composition. Among them, the passivation current density is the lowest and the polarization resistance is the highest for 254SMo stainless steel, which may be ascribed to that the formed passive film of high quality contains high Cr content, and appropriate amount of Mo and Ni on 254SMo stainless steel.

Key wordscorrosion-resistant alloy    flue gas condensate    corrosion    passivation
收稿日期: 2021-01-09     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51701102)
通讯作者: 王力伟     E-mail: ustbwangliwei@126.com
Corresponding author: WANG Liwei     E-mail: ustbwangliwei@126.com
作者简介: 赵康,男,1996年生,硕士生

引用本文:

赵康, 李晓琦, 王铭滔, 刘宇茜, 姜华伟, 杨启容, 王力伟. 4种耐蚀合金在超超临界锅炉烟气冷凝液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 493-500.
Kang ZHAO, Xiaoqi LI, Mingtao WANG, Yuxi LIU, Huawei JIANG, Qirong YANG, Liwei WANG. Corrosion Behavior of Four Corrosion-resistant Alloys in Ultra-supercritical Boiler Flue Gas Condensate. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 493-500.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.004      或      https://www.jcscp.org/CN/Y2021/V41/I4/493

MaterialCCrNiMoCuNSiMnSPWCoAlTiNbFe
254SMo0.01220.3017.96.10.770.20.430.180.0010.022---------------Bal.
316L0.0217.510.42.7---0.150.41.20.010.02---------------Bal.
Inconel 740H0.0325.048.270.5------0.50.3---------200.91.82.0Bal.
C2760.00115.8857.6915.64------0.030.52------3.381.51---------Bal.
表1  4种耐蚀合金的化学成分
图1  4种材料在模拟烟气冷凝液中的动电位极化曲线测试
图2  4种不同材料在模拟烟气冷凝液中的长周期开路电位
图3  4种材料在烟气冷凝液中浸泡24 h的EIS结果
MaterialRs / Ω·cm2Q1 / 10-6 Ω-1·cm-2·snnR1 / kΩ·cm2Q2 / 10-6 Ω-1·cm-2·snnR2 / kΩ·cm2R / kΩ·cm2
254SMo6.85487.170.890.2137.990.971408.001408.21
Inconel 740H7.0379.20.890.1829.90.98793.30793.48
C2766.90112.90.890.1831.01.00122.00122.18
316L6.5398.60.880.233.90.94329.00329.20
表2  4种材料的阻抗拟合数据
图4  4种材料钝化膜中O 1s的XPS谱图
图5  4种材料钝化膜中Fe 2p3/2的XPS谱
图6  4种材料钝化膜中Cr 2p3/2的XPS谱图
图7  4种材料钝化膜中Mo 3d的XPS谱图
图8  4种材料钝化膜中Ni 2p3/2的XPS谱图
图9  钝化膜中不同元素比例图
1 Jiang X G, Liu X B. Research progress and direction thinking on corrosion of key heat transfer components in waste incineration boilers [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 205
1 蒋旭光, 刘晓博. 垃圾焚烧锅炉关键受热面腐蚀研究进展及方向思考 [J]. 中国腐蚀与防护学报, 2020, 40: 205
2 Wang C G, Wei J, Wei X, et al. Crevice corrosion behavior of several super stainless steels in a simulated corrosive environment of flue gas desulfurization process [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 43
2 王长罡, 魏洁, 魏欣等. 几种超级不锈钢在模拟烟气脱硫环境中的缝隙腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 43
3 Rajendran N, Latha G, Rajeswari S. Localised corrosion behaviour of alloys 33 and 24 in simulated flue gas desulphurisation environment [J]. Br. Corros. J., 2002, 37: 276
4 He Y S, Yoo K B, Park J C, et al. TEM study the corrosion behavior of the low alloy steels developed for flue gas desulfurization system [J]. Mater. Charact., 2018, 142: 540
5 Dou Y P, Han S K, Wang L W, et al. Characterization of the passive properties of 254SMO stainless steel in simulated desulfurized flue gas condensates by electrochemical analysis, XPS and ToF-SIMS [J]. Corros. Sci., 2020, 165: 108405
6 Jansen P, Hansen V, Jensen T. Corrosion experience with carbon steel in spray absorption FGD plant [J]. Mater. Corr., 1992, 43: 310
7 Dahl L. Corrosion in flue gas desulfurization plants and other low temperature equipment [J]. Mater. Corros., 1992, 43: 298
8 Roth P. Corrosion-resistant special steels for flue gas desulphurisation plants [J]. Mater. Corros., 1992, 43: 275
9 Darowicki K, Krakowiak S. Durability evaluation of Ni-Cr-Mo super alloys in a simulated scrubbed flue gas environment [J]. Anti-Corros. Methods Mater., 1999, 46: 19
10 Le D P, Ji W S, Kim J G, et al. Effect of antimony on the corrosion behavior of low-alloy steel for flue gas desulfurization system [J]. Corros. Sci., 2008, 50: 1195
11 Shoemaker L, Crum J, Maitra D, et al. Recent experience with stainless steels in FGD air pollution control service [A]. Corrosion 2011 [C]. Houston, Texas, 2011: 11167
12 Paul L D, Kingseed D A, Van Gansbeke L. Experience with the new Ni-Cr-Mo alloy UNS N06200 in flue gas desulfurization (FGD) systems [A]. Corrosion 2000 [C]. Orlando, Florida, 2000: 11
13 Zeng Y M, Li K Y, Hughes R, et al. Corrosion mechanisms and materials selection for the construction of flue gas component in advanced heat and power systems [J]. Ind. Eng. Chem. Res., 2017, 56: 14141
14 Yang Y G, Zhang T, Shao Y W, et al. In situ study of dew point corrosion by electrochemical measurement [J]. Corros. Sci., 2013, 71: 62
15 Qiao Y X, Zheng Y G, Ke W, et al. Electrochemical behaviour of high nitrogen stainless steel in acidic solutions [J]. Corros. Sci., 2009, 51: 979
16 Jin Z H, Ge H H, Lin W W, et al. Corrosion behaviour of 316L stainless steel and anti-corrosion materials in a high acidified chloride solution [J]. Appl. Surf. Sci., 2014, 322: 47
17 Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl- [J]. Corros. Sci., 2021, 178: 109076
18 Rovere C A D, Alano J H, Silva R, et al. Characterization of passive films on shape memory stainless steels [J]. Corros. Sci., 2012, 57: 154
19 Huang J B, Wu X Q, Han E-H. Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments [J]. Corros. Sci., 2010, 52: 3444
20 Wang L W, Dou Y P, Han S K, et al. Influence of sulfide on the passivation behavior and surface chemistry of 2507 super duplex stainless steel in acidified artificial seawater [J]. Appl. Surf. Sci., 2020, 504: 144340
21 Ries L A S, Da Cunha Belo M, Ferreira M G S, et al. Chemical composition and electronic structure of passive films formed on Alloy 600 in acidic solution [J]. Corros. Sci., 2008, 50: 676
22 Lazauskas A, Grigaliūnas V, Guobienė A, et al. Atomic force microscopy and X-ray photoelectron spectroscopy evaluation of adhesion and nanostructure of thin Cr films [J]. Thin Solid Films, 2012, 520: 6328
23 Luo H, Dong C F, Li X G, et al. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride [J]. Electrochim. Acta, 2012, 64: 211
24 Olsson C O A, Landolt D. Passive films on stainless steels—Chemistry, structure and growth [J]. Electrochim. Acta, 2003, 48: 1093
25 Montemor M F, Simões A M P, Ferreira M G S, et al. The role of Mo in the chemical composition and semiconductive behaviour of oxide films formed on stainless steels [J]. Corros. Sci., 1999, 41: 17
[1] 李光泉, 李广芳, 王俊强, 张天遂, 张斐, 蒋习民, 刘宏芳. 临海管道微生物腐蚀损伤机制与防护[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[2] 姜军, 王军阳, 金武俊, 景伟德, 万善宏, 易戈文, 范伟, 寇劲松. 带肋钢腐蚀及其防腐蚀技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(4): 439-449.
[3] 周浩, 王胜利, 刘雪峰, 尤世界. 新型复合缓蚀剂对青铜文物的防腐蚀研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 517-522.
[4] 孙晓光, 王子晗, 徐学旭, 韩晓辉, 李刚卿, 刘智勇. 工业大气环境对Al-Mg-Si合金腐蚀疲劳特性的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 501-507.
[5] 焦洋, 张胜寒, 檀玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(4): 417-428.
[6] 吕祥鸿, 马晓凤, 胡兆伟, 李媛媛, 王晨. T/S-52K直缝钢在不同Cl-浓度下的腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(4): 555-559.
[7] 任莹, 赵会军, 周昊, 张建伟, 刘雯, 杨足膺, 王磊. 粒径和温度对20号钢冲刷腐蚀协同作用的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 508-516.
[8] 王军, 陈军君, 谢亿, 徐松, 刘兰兰, 吴堂清, 尹付成. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[9] 陈文娟, 方莲, 潘刚. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[10] 刘骁飞, 王春雨, 周俊锋, 金浩哲, 王超. 胺液脱除CO2系统空冷器腐蚀规律研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 389-394.
[11] 乔忠立, 王玲, 史艳华, 杨众魁. 14Cr1MoR钢焊接接头组织及耐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[12] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[13] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[14] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[15] 李瑞涛, 肖博, 刘晓, 朱忠亮, 程义, 李俊菀, 曹杰玉, 丁海民, 张乃强. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.