|
|
4种耐蚀合金在超超临界锅炉烟气冷凝液中的腐蚀行为研究 |
赵康, 李晓琦, 王铭滔, 刘宇茜, 姜华伟, 杨启容, 王力伟( ) |
青岛大学机电工程学院 青岛 266071 |
|
Corrosion Behavior of Four Corrosion-resistant Alloys in Ultra-supercritical Boiler Flue Gas Condensate |
ZHAO Kang, LI Xiaoqi, WANG Mingtao, LIU Yuxi, JIANG Huawei, YANG Qirong, WANG Liwei( ) |
School of Electromechanic Engineering, QingDao University, Qingdao 266071, China |
引用本文:
赵康, 李晓琦, 王铭滔, 刘宇茜, 姜华伟, 杨启容, 王力伟. 4种耐蚀合金在超超临界锅炉烟气冷凝液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 493-500.
Kang ZHAO,
Xiaoqi LI,
Mingtao WANG,
Yuxi LIU,
Huawei JIANG,
Qirong YANG,
Liwei WANG.
Corrosion Behavior of Four Corrosion-resistant Alloys in Ultra-supercritical Boiler Flue Gas Condensate. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 493-500.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2021.004
或
https://www.jcscp.org/CN/Y2021/V41/I4/493
|
1 |
Jiang X G, Liu X B. Research progress and direction thinking on corrosion of key heat transfer components in waste incineration boilers [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 205
|
1 |
蒋旭光, 刘晓博. 垃圾焚烧锅炉关键受热面腐蚀研究进展及方向思考 [J]. 中国腐蚀与防护学报, 2020, 40: 205
|
2 |
Wang C G, Wei J, Wei X, et al. Crevice corrosion behavior of several super stainless steels in a simulated corrosive environment of flue gas desulfurization process [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 43
|
2 |
王长罡, 魏洁, 魏欣等. 几种超级不锈钢在模拟烟气脱硫环境中的缝隙腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 43
|
3 |
Rajendran N, Latha G, Rajeswari S. Localised corrosion behaviour of alloys 33 and 24 in simulated flue gas desulphurisation environment [J]. Br. Corros. J., 2002, 37: 276
|
4 |
He Y S, Yoo K B, Park J C, et al. TEM study the corrosion behavior of the low alloy steels developed for flue gas desulfurization system [J]. Mater. Charact., 2018, 142: 540
|
5 |
Dou Y P, Han S K, Wang L W, et al. Characterization of the passive properties of 254SMO stainless steel in simulated desulfurized flue gas condensates by electrochemical analysis, XPS and ToF-SIMS [J]. Corros. Sci., 2020, 165: 108405
|
6 |
Jansen P, Hansen V, Jensen T. Corrosion experience with carbon steel in spray absorption FGD plant [J]. Mater. Corr., 1992, 43: 310
|
7 |
Dahl L. Corrosion in flue gas desulfurization plants and other low temperature equipment [J]. Mater. Corros., 1992, 43: 298
|
8 |
Roth P. Corrosion-resistant special steels for flue gas desulphurisation plants [J]. Mater. Corros., 1992, 43: 275
|
9 |
Darowicki K, Krakowiak S. Durability evaluation of Ni-Cr-Mo super alloys in a simulated scrubbed flue gas environment [J]. Anti-Corros. Methods Mater., 1999, 46: 19
|
10 |
Le D P, Ji W S, Kim J G, et al. Effect of antimony on the corrosion behavior of low-alloy steel for flue gas desulfurization system [J]. Corros. Sci., 2008, 50: 1195
|
11 |
Shoemaker L, Crum J, Maitra D, et al. Recent experience with stainless steels in FGD air pollution control service [A]. Corrosion 2011 [C]. Houston, Texas, 2011: 11167
|
12 |
Paul L D, Kingseed D A, Van Gansbeke L. Experience with the new Ni-Cr-Mo alloy UNS N06200 in flue gas desulfurization (FGD) systems [A]. Corrosion 2000 [C]. Orlando, Florida, 2000: 11
|
13 |
Zeng Y M, Li K Y, Hughes R, et al. Corrosion mechanisms and materials selection for the construction of flue gas component in advanced heat and power systems [J]. Ind. Eng. Chem. Res., 2017, 56: 14141
|
14 |
Yang Y G, Zhang T, Shao Y W, et al. In situ study of dew point corrosion by electrochemical measurement [J]. Corros. Sci., 2013, 71: 62
|
15 |
Qiao Y X, Zheng Y G, Ke W, et al. Electrochemical behaviour of high nitrogen stainless steel in acidic solutions [J]. Corros. Sci., 2009, 51: 979
|
16 |
Jin Z H, Ge H H, Lin W W, et al. Corrosion behaviour of 316L stainless steel and anti-corrosion materials in a high acidified chloride solution [J]. Appl. Surf. Sci., 2014, 322: 47
|
17 |
Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl- [J]. Corros. Sci., 2021, 178: 109076
|
18 |
Rovere C A D, Alano J H, Silva R, et al. Characterization of passive films on shape memory stainless steels [J]. Corros. Sci., 2012, 57: 154
|
19 |
Huang J B, Wu X Q, Han E-H. Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments [J]. Corros. Sci., 2010, 52: 3444
|
20 |
Wang L W, Dou Y P, Han S K, et al. Influence of sulfide on the passivation behavior and surface chemistry of 2507 super duplex stainless steel in acidified artificial seawater [J]. Appl. Surf. Sci., 2020, 504: 144340
|
21 |
Ries L A S, Da Cunha Belo M, Ferreira M G S, et al. Chemical composition and electronic structure of passive films formed on Alloy 600 in acidic solution [J]. Corros. Sci., 2008, 50: 676
|
22 |
Lazauskas A, Grigaliūnas V, Guobienė A, et al. Atomic force microscopy and X-ray photoelectron spectroscopy evaluation of adhesion and nanostructure of thin Cr films [J]. Thin Solid Films, 2012, 520: 6328
|
23 |
Luo H, Dong C F, Li X G, et al. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride [J]. Electrochim. Acta, 2012, 64: 211
|
24 |
Olsson C O A, Landolt D. Passive films on stainless steels—Chemistry, structure and growth [J]. Electrochim. Acta, 2003, 48: 1093
|
25 |
Montemor M F, Simões A M P, Ferreira M G S, et al. The role of Mo in the chemical composition and semiconductive behaviour of oxide films formed on stainless steels [J]. Corros. Sci., 1999, 41: 17
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|