|
|
带肋钢腐蚀及其防腐蚀技术研究进展 |
姜军1, 王军阳2, 金武俊1, 景伟德1, 万善宏2( ), 易戈文2, 范伟1, 寇劲松1 |
1.酒泉钢铁 (集团) 有限责任公司 嘉峪关 735100 2.中国科学院兰州化学物理研究所 兰州 730000 |
|
Research Progress on Corrosion and Anti-corrosion Technology of Ribbed Steel |
JIANG Jun1, WANG Junyang2, JIN Wujun1, JING Weide1, WAN Shanhong2( ), YI Gewen2, FAN Wei1, KOU Jinsong1 |
1.Jiuquan Iron & Steel (Group) Co. , Ltd. , Jiayuguan 735100, China 2.Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China |
引用本文:
姜军, 王军阳, 金武俊, 景伟德, 万善宏, 易戈文, 范伟, 寇劲松. 带肋钢腐蚀及其防腐蚀技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(4): 439-449.
Jun JIANG,
Junyang WANG,
Wujun JIN,
Weide JING,
Shanhong WAN,
Gewen YI,
Wei FAN,
Jinsong KOU.
Research Progress on Corrosion and Anti-corrosion Technology of Ribbed Steel. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 439-449.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2020.134
或
https://www.jcscp.org/CN/Y2021/V41/I4/439
|
1 |
Su H Z. Study on the production process of HRB400 hot-rolled ribbed steel bar [D]. Chongqing: Chongqing University, 2007
|
1 |
苏鹤洲. HRB400热轧带肋钢筋生产工艺研究 [D]. 重庆: 重庆大学, 2007
|
2 |
Jin X, Song R B, Wang X Y, et al. Production process optimization of the hot rolling HRB400 rebar [J]. Henan Metall., 2013, 21(2): 45
|
2 |
靳熙, 宋仁伯, 王晓燕等. HRB400带肋钢筋生产工艺优化 [J]. 河南冶金, 2013, 21(2): 45
|
3 |
Zhou F G, Wu S J. Production practice of Nb-bearing HRB400 hot rolling ribbed reinforced bar [J]. China Metall., 2005, (9): 33
|
3 |
周福功, 吴绍杰. 含铌HRB400热轧带肋钢筋的生产实践 [J]. 中国冶金, 2005, (9): 33
|
4 |
Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. NPJ Mater. Degrad., 2017, 1: 4
|
5 |
Wang J. Effect of concrete cover on corrosion mechanism and corrosion rate of steel bar [J]. Market Res. Inform., 2019, (4): 81
|
5 |
王建. 混凝土保护层对钢筋腐蚀机理及腐蚀速率的影响 [J]. 市场调查信息 (综合版), 2019, (4): 81
|
6 |
Li F M, Li Z J. Continuum damage mechanics based modeling of fiber reinforced concrete in tension [J]. Int. J. Solids Struct., 2001, 38: 777
|
7 |
Li Z, Jin Z Q, Shao S S, et al. A review on reinforcement corrosion mechanics and monitoring techniques in concrete in marine environment [J]. Mater. Rev., 2018, 32: 4170
|
7 |
李哲, 金祖权, 邵爽爽等. 海洋环境下混凝土中钢筋锈蚀机理及监测技术概述 [J]. 材料导报, 2018, 32: 4170
|
8 |
Al-Tikrite A, Hadi M N S. Mechanical properties of reactive powder concrete containing industrial and waste steel fibres at different ratios under compression [J]. Constr. Build. Mater., 2017, 154: 1024
|
9 |
Jin W L, Zhou Z D, Mao J H, et al. Experimental study on magnetic field distribution in the fatigue process of corroded steel bars [J]. Ocean Eng., 2016, 34(5): 65
|
9 |
金伟良, 周峥栋, 毛江鸿等. 锈蚀钢筋在疲劳荷载作用下压磁场分布研究 [J]. 海洋工程, 2016, 34(5): 65
|
10 |
Li J. Effect of negative difference rate and corrosion of hot rolled ribbed steel bar on steel bar performance [A]. Academic Seminar on Railway and Construction Steel [C]. Huangshan, 2013: 311
|
10 |
李军. 热轧带肋钢筋负差率及锈蚀对钢筋性能的影响 [A]. 2013年铁路和建筑用钢学术研讨会论文集 [C]. 黄山, 2013: 311
|
11 |
Liu J T, Zheng M Q. Climatic characteristics of strong and very strong sandstorms in the middle and west parts of Inner Mongolia [J]. Plateau Meteor., 2003, 22: 51
|
11 |
刘景涛, 郑明倩. 内蒙古中西部强和特强沙尘暴的气候学特征 [J]. 高原气象, 2003, 22: 51
|
12 |
Cai C X, Jiang W M, Huang S H, et al. Chemical characteristic of two duststorms in the south-east coastal area of China and its possible origin [J]. Plateau Meteor., 2000, 19: 179
|
12 |
蔡晨霞, 蒋维楣, 黄世鸿等. 我国东南沿海两次沙尘的化学特征及其源地探讨 [J]. 高原气象, 2000, 19: 179
|
13 |
Ma Z H, Wang J. Progress on study of erosion of military equipments by sand and dust [J]. Corros. Sci. Prot. Technol., 2005, 17: 112
|
13 |
马志宏, 汪浚. 砂尘环境中军用装备磨损腐蚀进展的研究 [J]. 腐蚀科学与防护技术, 2005, 17: 112
|
14 |
Hao Y H, Xing Y M, Zhao Y R, et al. Erosion mechanism and evaluation method of steel structure coating eroded under sandstorm environment [J]. J. Build. Mater., 2011, 14: 345
|
14 |
郝贠洪, 邢永明, 赵燕茹等. 风沙环境下钢结构涂层侵蚀机理及评价方法 [J]. 建筑材料学报, 2011, 14: 345
|
15 |
Hao Y H, Xing Y M, Feng Y J, et al. Research on anti-erosion mechanical properties of steel structure coating [J]. J. Build. Mater., 2013, 16: 1092
|
15 |
郝贠洪, 邢永明, 冯玉江等. 钢结构表面涂层材料抗风沙冲蚀力学性能研究 [J]. 建筑材料学报, 2013, 16: 1092
|
16 |
Li L, Wei T C, Liu M W, et al. Research progress on erosion wear mechanism and anti-erosion coatings [J]. J. Chongqing Jiaotong Univ. (Nat. Sci.), 2019, 38(8): 70
|
16 |
李力, 魏天酬, 刘明维等. 冲蚀磨损机理及抗冲蚀涂层研究进展 [J]. 重庆交通大学学报 (自然科学版), 2019, 38(8): 70
|
17 |
Yao M J, Li C F, He J B, et al. Progresses of anti-erosion coatings [J]. Mater. Rev., 2015, 29: 283
|
17 |
姚梦佳, 李春福, 何俊波等. 抗冲蚀磨损涂层的研究进展 [J]. 材料导报: 纳米与新材料专辑, 2015, 29: 283
|
18 |
Ren Y. Erosion wear mechanism and evaluation of steel-structure coating in sandstorm [D]. Hohhot: Inner Mongolia University of Technology, 2014
|
18 |
任莹. 钢结构涂层受风沙环境冲蚀机理和损伤程度评价研究 [D]. 呼和浩特: 内蒙古工业大学, 2014
|
19 |
Li S Z, Dong X L. Erosion Wear and Fretting Wear of Materials [M]. Beijing: Mechanical Industry Press, 1987
|
19 |
李诗卓, 董祥林. 材料的冲蚀磨损与微动磨损 [M]. 北京: 机械工业出版社, 1987
|
20 |
Ballout Y, Mathis J A, Talia J E. Solid particle erosion mechanism in glass [J]. Wear, 1996, 196: 263
|
21 |
Finnie I. Erosion of surfaces by solid particles [J]. Wear, 1960, 3: 87
|
22 |
Hao Y H, Ren Y, Duan G L, et al. Erosion mechanism and evaluation of steel structure coating eroded under sandstorm environment [J]. Tribology, 2014, 34: 357
|
22 |
郝贠洪, 任莹, 段国龙等. 钢结构表面涂层受风沙冲蚀机理和评价方法 [J]. 摩擦学学报, 2014, 34: 357
|
23 |
Yang S. The development of high-strength steel and the research of anti-corrosion resistance [D]. Xi'an: Xi'an University of Architecture and Technology, 2015
|
23 |
杨森. 高强度钢筋开发及抗锈蚀性研究 [D]. 西安: 西安建筑科技大学, 2015
|
24 |
Ding G Q, Zhang B. Research progress of atmospheric corrosion of steels in natural environment [J]. Equip. Environ. Eng., 2010, 7(3): 42
|
24 |
丁国清, 张波. 钢在自然环境中的大气腐蚀研究进展 [J]. 装备环境工程, 2010, 7(3): 42
|
25 |
Zhang Q C, Wu J S. Current status of R&D work on weathering steel [J]. Mater. Rev., 2000, 14(7): 12
|
25 |
张全成, 吴建生. 耐侯钢的研究与发展现状 [J]. 材料导报, 2000, 14(7): 12
|
26 |
Liu Z. Discussion on atmospheric corrosion of weathering steel and carbon steel [J]. China High-Tech Enterprises, 2015, (7): 85
|
26 |
柳喆. 耐候钢和碳钢大气腐蚀探讨 [J]. 中国高新技术企业, 2015, (7): 85
|
27 |
Zhang Q C, Wu J S, Yang X F, et al. Investigation of accelerated laboratory tests for weathering steel [J]. Mater. Prot., 2002, 35(3): 21
|
27 |
张全成, 吴建生, 杨晓芳等. 耐大气腐蚀用钢实验室加速腐蚀的研究 [J]. 材料保护, 2002, 35(3): 21
|
28 |
Yang X F, Zheng W L. Analysis on the corrosion rust of weathering steel and carbon steel exposed to atmosphere for two years [J]. Corros. Prot., 2002, 23: 97
|
28 |
杨晓芳, 郑文龙. 暴露2年的碳钢与耐候钢表面锈层分析 [J]. 腐蚀与防护, 2002, 23: 97
|
29 |
Bavarian B, Ikder Y, Samimi B, et al. Comparison of the corrosion protection effectiveness of vapor corrosion inhibitors and dry air system [A]. Corrosion 2015 Conference [C]. Dallas, Texas, 2015: 10
|
30 |
Wang X J. Research on the behaviors and mechanism of the rust layer evolution of the early stages of atmospheric corrosion for metals [D]. Beijing: China Academy of Machinery Science and Technology, 2013
|
30 |
王秀静. 金属材料大气环境早期腐蚀行为及锈层演化机制研究 [D]. 北京: 机械科学研究总院, 2013
|
31 |
Boden P J. Effect of concentration, velocity and temperature [A]. Corrosion [M]. 3rd Ed. New York: Elsevier, 1994
|
32 |
Liu J Z. A review of carbonation in reinforced concrete (1): Mechanism of carbonation and evaluative methods [J]. Concrete, 2005, (11): 10
|
32 |
柳俊哲. 混凝土碳化研究与进展 (1)—碳化机理及碳化程度评价 [J]. 混凝土, 2005, (11): 10
|
33 |
Li G, Yuan Y S, Geng O. Influences of climate conditions to the concrete carbonization rates [J]. Concrete, 2004, (11): 49
|
33 |
李果, 袁迎曙, 耿欧. 气候条件对混凝土碳化速度的影响 [J]. 混凝土, 2004, (11): 49
|
34 |
Papadakis V G, Vayenas C G, Fardis M N. Fundamental modeling and experimental investigation of concrete carbonation [J]. ACI Mater. J., 1991, 88: 363
|
35 |
Roberge P R. Handbook of Corrosion Engineering [M]. New York: McGraw-Hill, 2000
|
36 |
Smart N G, Gamboa-Aldeco M, Bockris J O M. Corrosion mechanisms of iron in concentrated acidic zinc chloride media [J]. Corros. Sci., 1993, 34: 759
|
37 |
Enke C G. Werkstoffe und korrosion [J]. Mater. Corros., 1972, 23: XLIII
|
38 |
Pacheco A M G, Teixeira M G I B, Ferreira M G S. Initial stages of chloride induced atmospheric corrosion of iron: an infrared spectroscopic study [J]. Br. Corros. J., 1990, 25: 57
|
39 |
Refait P, Benali O, Abdelmoula M, et al. Formation of 'ferric green rust' and/or ferrihydrite by fast oxidation of iron (II-III) hydroxychloride green rust [J]. Corros. Sci., 2003, 45: 2435
|
40 |
Legrand L, Sagon G, Lecomte S, et al. A Raman and infrared study of a new carbonate green rust obtained by electrochemical way [J]. Corros. Sci., 2001, 43: 1739
|
41 |
Refait P, Memet J B, Bon C, et al. Formation of the Fe(II)-Fe(III) hydroxysulphate green rust during marine corrosion of steel [J]. Corros. Sci., 2003, 45: 833
|
42 |
Géhin A, Ruby C, Abdelmoula M, et al. Synthesis of Fe(II-III) hydroxysulphate green rust by coprecipitation [J]. Solid State Sci., 2002, 4: 61
|
43 |
Ruby C, Géhin A, Abdelmoula M, et al. Coprecipitation of Fe(II) and Fe(III) cations in sulphated aqueous medium and formation of hydroxysulphate green rust [J]. Solid State Sci., 2003, 5: 1055
|
44 |
Hong N F. Corrosion in water environments and durability of concrete [J]. Corros. Prot., 2006, 27: 174
|
44 |
洪乃丰. 水环境腐蚀与混凝土的耐久性 [J]. 腐蚀与防护, 2006, 27: 174
|
45 |
Odokuma L O, Ugboma C J. Microbial corrosion of steel coupons in a freshwater habitat in the Niger Delta [J]. J. Ecol. Nat. Environ., 2012, 4: 42
|
46 |
Cao G, Gao C, Gan F X. Corrosion behaviors of carbon steel in fresh water [J]. Equip. Environ. Eng., 2006, 3(1): 46
|
46 |
曹刚, 高翠, 甘复兴. 碳钢在淡水环境中的腐蚀行为 [J]. 装备环境工程, 2006, 3(1): 46
|
47 |
Zhang W Y. Corrosion and prevention of hydraulic steel gate in freshwater environment [J]. Surf. Technol., 2001, 30(4): 20
|
47 |
张文渊. 淡水环境中水工钢闸门的腐蚀与防护 [J]. 表面技术, 2001, 30(4): 20
|
48 |
Yang Z K. Corrosion and its control of steel radiator [J]. Heat. Vent. Air Cond., 2001, 31(1): 21
|
48 |
杨志宽. 钢制散热器腐蚀与控制 [J]. 暖通空调, 2001, 31(1): 21
|
49 |
Zhu Y X, Zhu X C, Ge Y, et al. Study on corrosion behavior of steel in flowing freshwater [J]. Hydro-Sci. Eng., 2002, (2): 7
|
49 |
朱雅仙, 朱锡昶, 葛燕等. 流动淡水中钢的腐蚀行为研究 [J]. 水利水运工程学报, 2002, (2): 7
|
50 |
Beech I B. Biocorrosion: Role of sulfate reducing bacteria [A]. Encyclopedia of Environmental Microbiology [M]. New York: John Wiley & Sons, Inc., 2003
|
51 |
Dinh H T, Kuever J, Mußmann M, et al. Iron corrosion by novel anaerobic microorganisms [J]. Nature, 2004, 427: 829
|
52 |
Hamilton W A. Microbially influenced corrosion as a model system for the study of metal microbe interactions: A unifying electron transfer hypothesis [J]. Biofouling, 2003, 19: 65
|
53 |
Lv H, Wei C F, Liang B F, et al. Analysis on causes of high corrosion rate in circulating water system of chemical fertilizer plant [J]. Petrochem. Technol. Appl., 2000, 18: 362
|
53 |
吕红, 魏存发, 梁宝锋等. 大化肥循环水系统腐蚀率高的原因剖析 [J]. 石化技术与应用, 2000, 18: 362
|
54 |
Gibson G R. Physiology and ecology of the sulphate-reducing bacteria [J]. J. Appl. Bacteriol., 1990, 69: 769
|
55 |
Zhu R X, Na J Y, Guo S W, et al. Corrosion mechanism of sulfate-reducing bacteria [J]. J. Air Force Eng. Univ. (Nat. Sci. Ed.), 2000, 1(3): 10
|
55 |
朱绒霞, 那静彦, 郭生武等. 硫酸盐还原菌的腐蚀机理 [J]. 空军工程大学学报 (自然科学版), 2000, 1(3): 10
|
56 |
Xu Q, Zhan S L, Zhang Q L, et al. Preparation and properties of nano-silicone marine reinforced concrete permeable protective coating [J]. Chin. J. Mater. Res., 2014, 28: 443
|
56 |
徐强, 詹树林, 张启龙等. 海洋工程钢筋混凝土纳米硅渗透型防护剂的制备和性能 [J]. 材料研究学报, 2014, 28: 443
|
57 |
Wu Q L. Research on flexural RC components exposed to marine environments: durability and life prediction [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010
|
57 |
吴庆令. 海洋环境钢筋混凝土受弯构件的耐久性与寿命预测 [D]. 南京: 南京航空航天大学, 2010
|
58 |
Tian H W, Li W H, Zong C Z, et al. Corrosion mechanism and research progress of anti-corrosion coatings for reinforced concrete used in marine environment [J]. Paint Coat. Ind., 2008, 38(8): 62
|
58 |
田惠文, 李伟华, 宗成中等. 海洋环境钢筋混凝土腐蚀机理和防腐涂料研究进展 [J]. 涂料工业, 2008, 38(8): 62
|
59 |
Morris W, Vazquez M. Corrosion of reinforced concrete exposed to marine environment [J]. Corros. Rev., 2002, 20: 469
|
60 |
Zhu H W, Yu H F, Ma H Y. Electrochemical study on effect of rust inhibitors on corrosion of reinforcing bar in concrete in marine environment [J]. J. Southeast Univ. (Nat. Sci. Ed.), 2020, 50: 109
|
60 |
朱海威, 余红发, 麻海燕. 阻锈剂对海洋环境下混凝土中钢筋腐蚀影响的电化学研究 [J]. 东南大学学报 (自然科学版), 2020, 50: 109
|
61 |
Yu Z T, Han D J. Method of carbonization reliability assessment for existing reinforced concrete bridges [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2004, 32(2): 50
|
61 |
禹智涛, 韩大建. 既有钢筋混凝土桥梁碳化可靠度评估方法 [J]. 华南理工大学学报 (自然科学版), 2004, 32(2): 50
|
62 |
Song L Y. Study on chloride corrosion durability of reinforced concrete marine structures [D]. Dalian: Dalian University of Technology, 2009
|
62 |
宋立元. 海洋钢筋混凝土结构氯离子腐蚀耐久性研究 [D]. 大连: 大连理工大学, 2009
|
63 |
Liang Y N, Yuan Y S. Test study on bond behavior of corroded concrete and steel bars [J]. Concrete, 2008, (2): 20
|
63 |
梁咏宁, 袁迎曙. 受硫酸盐腐蚀混凝土与钢筋黏结性能的研究 [J]. 混凝土, 2008, (2): 20
|
64 |
Artigas A, Monsalve A, Sipos K, et al. Development of accelerated wet-dry cycle corrosion test in marine environment for weathering steels [J]. Corros. Eng. Sci. Technol., 2015, 50: 628
|
65 |
Melchers R E, Li C Q. Reinforcement corrosion in concrete exposed to the North Sea for more than 60 years [J]. Corrosion, 2009, 65: 554
|
66 |
Han J Y, Dai C, Gao Z H, et al. Microorganism corrosion of concrete [J]. Mater. Rev., 2002, 16(10): 42
|
66 |
韩静云, 戴超, 郜志海等. 混凝土的微生物腐蚀 [J]. 材料导报, 2002, 16(10): 42
|
67 |
Li J C M. Microstructure and Properties of Materials [M]. Singapore: World Scientific, 1996
|
68 |
Miller F M, Tang F J. The distribution of sulfur in present-day clinkers of variable sulfur content [J]. Cem. Concr. Res., 1996, 26: 1821
|
69 |
Ormellese M, Berra M, Bolzoni F, et al. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures [J]. Cem. Concr. Res., 2006, 36: 536
|
70 |
Hussain S E, Al-Gahtani A S, Rasheeduzzafar. Chloride threshold for corrosion of reinforcement in concrete [J]. ACI Mater. J., 1996, 93: 534
|
71 |
Pavan I, Reddy K, Pai V. Repair and rehabilitation of concrete pavements [J]. Int. J. Eng. Res. Dev., 2015, 11: 2278
|
72 |
Mohammed T U, Otsuki N, Hamada H. Corrosion of steel bars in cracked concrete under marine environment [J]. J. Mater. Civil Eng., 2003, 15: 460
|
73 |
Skoglund P, Silfwerbrand J, Holmgren J, et al. Chloride redistribution and reinforcement corrosion in the interfacial region between substrate and repair concrete-a laboratory study [J]. Mater. Struct., 2008, 41: 1001
|
74 |
Quraishi M A, Nayak D K, Kumar R, et al. Corrosion of reinforced steel in concrete and its control: An overview [J]. J. Steel Struct. Constr., 2017, 2: 124
|
75 |
Mehta P K, Monteiro P J M. Concrete: Microstructure, Properties, and Materials [M]. 4th Ed. New York: McGraw-Hill, 2014
|
76 |
Isgor O B, Razaqpur A G. Modelling steel corrosion in concrete structures [J]. Mater. Struct., 2006, 39: 291
|
77 |
Raupach M. Corrosion of steel reinforcement in concrete [J]. Mater. Corros., 2009, 60: 77
|
78 |
He K, Xu Y F, Tan Y, et al. Review of corrosion behavior of typical nuclear power materials [J]. Shandong Chem. Ind., 2018, 47(22): 61
|
78 |
何宽, 徐芸菲, 檀玉等. 核电典型材料的腐蚀行为研究综述 [J]. 山东化工, 2018, 47(22): 61
|
79 |
Liu X, Zhao J C, Wang G G, et al. Failure analysis of pipelines and welding joints in nuclear power plant [J]. Fail. Anal. Prev., 2013, 8: 300
|
79 |
刘肖, 赵建仓, 王淦刚等. 核电厂管道及焊接接头失效案例综述 [J]. 失效分析与预防, 2013, 8: 300
|
80 |
Staehle R W, Gorman J A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 1 [J]. Corrosion, 2003, 59: 931
|
81 |
Andresen P L, Ford F P. Prediction of stress corrosion cracking (SCC) in nuclear power systems [A]. Stress Corrosion Cracking [M]. Cambridge: Woodhead Publishing, 2011: 651
|
82 |
Peng Q J, Hou J, Takeda Y, et al. Effect of chemical composition on grain boundary microchemistry and stress corrosion cracking in Alloy 182 [J]. Corros. Sci., 2013, 67: 91
|
83 |
Wang Y. Study on surface contamination and surface modification of nuclear grade materials [D]. Dalian: Dalian University of Technology, 2010
|
83 |
王永. 核级材料的表面污染及表面改性研究 [D]. 大连: 大连理工大学, 2010
|
84 |
Deng P. Irradiation assisted corrosion and stress corrosion of nuclear-grade 304 stainless steel in high temperature and high pressure water [D]. Hefei: University of Science and Technology of China, 2018
|
84 |
邓平. 核级304不锈钢辐照促进高温高压水环境腐蚀与应力腐蚀研究 [D]. 合肥: 中国科学技术大学, 2018
|
85 |
Hu X, Neville A. The electrochemical response of stainless steels in liquid-solid impingement [J]. Wear, 2005, 258: 641
|
86 |
Barker K C, Ball A. Synergistic abrasive—corrosive wear of chromium containing steels [J]. Br. Corros. J., 1989, 24: 222
|
87 |
Ilevbare G O, Burstein G T. The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels [J]. Corros. Sci., 2001, 43: 485
|
88 |
Zheng Z B, Zheng Y G, Sun W H, et al. Erosion-corrosion of HVOF-sprayed Fe-based amorphous metallic coating under impingement by a sand-containing NaCl solution [J]. Corros. Sci., 2013, 76: 337
|
89 |
Wang G H. Influence of the sigma phase precipitation on the microstructure and properties in duplex stainless steel [J]. China Metall., 2011, 21(6): 15
|
89 |
王国华. σ相的析出对双相不锈钢组织性能的影响 [J]. 中国冶金, 2011, 21(6): 15
|
90 |
Wu X Q, Jing H M, Zheng Y G, et al. Resistance of Mo-bearing stainless steels and Mo-bearing stainless-steel coating to naphthenic acid corrosion and erosion-corrosion [J]. Corros. Sci., 2004, 46: 1013
|
91 |
Bertrand N, Desgranges C, Poquillon D, et al. Iron oxidation at low temperature (260~500 ℃) in air and the effect of water vapor [J]. Oxid. Met., 2010, 73: 139
|
92 |
Zhang B, Cao J, Guo Z, et al. Effect of cooling bed temperature on the corrosion resistance of surface oxide scale of rebar [J]. J. Anhui Univ. Technol. (Nat. Sci.), 2018, 35: 301
|
92 |
张波, 曹杰, 郭湛等. 上冷床温度对螺纹钢筋表面氧化铁皮抗锈蚀性能的影响 [J]. 安徽工业大学学报 (自然科学版), 2018, 35: 301
|
93 |
Chen R Y. Mechanism of iron oxide scale reduction in 5%H2-N2 gas at 650~900 ℃ [J]. Oxid. Met., 2017, 88: 687
|
94 |
Chen R Y, Yuen W Y D. Longer term oxidation kinetics of low carbon, low silicon steel in 17H2O-N2 at 900 ℃ [J]. Oxid. Met., 2016, 85: 489
|
95 |
Huang B H, Xu X L, Liu J, et al. A method for using ionic liquids as corrosion inhibitors for carbon steel [P]. Chin. Pat., 201010019346.8, 2010
|
95 |
黄宝华, 徐效陵, 刘军等. 一种离子液体用作碳钢缓蚀剂的方法 [P]. 中国专利, 201010019346.8, 2010)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|