Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (4): 439-449    DOI: 10.11902/1005.4537.2020.134
  综合评述 本期目录 | 过刊浏览 |
带肋钢腐蚀及其防腐蚀技术研究进展
姜军1, 王军阳2, 金武俊1, 景伟德1, 万善宏2(), 易戈文2, 范伟1, 寇劲松1
1.酒泉钢铁 (集团) 有限责任公司 嘉峪关 735100
2.中国科学院兰州化学物理研究所 兰州 730000
Research Progress on Corrosion and Anti-corrosion Technology of Ribbed Steel
JIANG Jun1, WANG Junyang2, JIN Wujun1, JING Weide1, WAN Shanhong2(), YI Gewen2, FAN Wei1, KOU Jinsong1
1.Jiuquan Iron & Steel (Group) Co. , Ltd. , Jiayuguan 735100, China
2.Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
全文: PDF(2341 KB)   HTML
摘要: 

分析讨论了带肋钢在不同工况下的锈蚀机理及影响因素,分别从风沙冲蚀、雨水冲刷、大气、淡水、海洋及核辐射6个方面阐述了带肋钢服役过程腐蚀现象。结合当前社会市场需求与已有防护技术,指出了带肋钢防护技术的主要发展方向。

关键词 带肋钢工况腐蚀    
Abstract

The corrosion mechanism and the relevant factors influencing the corrosion process of ribbed steel in service in different circumstances are analyzed and discussed in this paper. Peculiarly, and the corrosion status and its evolution process in atmospheric environments was described in terms of the influencing factors related with the following six aspects: wind sand damage, rain wash, atmosphere, fresh water, ocean and nuclear radiation. Combined with the current social market demand and existing protection technology, the main development direction of ribbed steel protection technology is pointed out.

Key wordsribbed steel    operating condition    corrosion
收稿日期: 2020-07-27     
ZTFLH:  TG174  
通讯作者: 万善宏     E-mail: shwan@licp.cas.cn
Corresponding author: WAN Shanhong     E-mail: shwan@licp.cas.cn
作者简介: 姜军,男,1982年生,工程师
王军阳,男,1992年生,硕士,助理工程师

引用本文:

姜军, 王军阳, 金武俊, 景伟德, 万善宏, 易戈文, 范伟, 寇劲松. 带肋钢腐蚀及其防腐蚀技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(4): 439-449.
Jun JIANG, Junyang WANG, Wujun JIN, Weide JING, Shanhong WAN, Gewen YI, Wei FAN, Jinsong KOU. Research Progress on Corrosion and Anti-corrosion Technology of Ribbed Steel. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 439-449.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.134      或      https://www.jcscp.org/CN/Y2021/V41/I4/439

图1  带肋钢外部雨水冲刷过程中的电化学锈蚀机理[23]
图2  带肋钢在大气中的锈蚀产物[41]
图3  海洋环境中混凝土结构不同部位受不同的侵蚀[64]
图4  带肋钢在混凝土中的腐蚀反应原理[75]
图5  应力腐蚀开裂 (SCC) 机理[78]
图6  蒸汽缓蚀剂原理图[29]
1 Su H Z. Study on the production process of HRB400 hot-rolled ribbed steel bar [D]. Chongqing: Chongqing University, 2007
1 苏鹤洲. HRB400热轧带肋钢筋生产工艺研究 [D]. 重庆: 重庆大学, 2007
2 Jin X, Song R B, Wang X Y, et al. Production process optimization of the hot rolling HRB400 rebar [J]. Henan Metall., 2013, 21(2): 45
2 靳熙, 宋仁伯, 王晓燕等. HRB400带肋钢筋生产工艺优化 [J]. 河南冶金, 2013, 21(2): 45
3 Zhou F G, Wu S J. Production practice of Nb-bearing HRB400 hot rolling ribbed reinforced bar [J]. China Metall., 2005, (9): 33
3 周福功, 吴绍杰. 含铌HRB400热轧带肋钢筋的生产实践 [J]. 中国冶金, 2005, (9): 33
4 Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. NPJ Mater. Degrad., 2017, 1: 4
5 Wang J. Effect of concrete cover on corrosion mechanism and corrosion rate of steel bar [J]. Market Res. Inform., 2019, (4): 81
5 王建. 混凝土保护层对钢筋腐蚀机理及腐蚀速率的影响 [J]. 市场调查信息 (综合版), 2019, (4): 81
6 Li F M, Li Z J. Continuum damage mechanics based modeling of fiber reinforced concrete in tension [J]. Int. J. Solids Struct., 2001, 38: 777
7 Li Z, Jin Z Q, Shao S S, et al. A review on reinforcement corrosion mechanics and monitoring techniques in concrete in marine environment [J]. Mater. Rev., 2018, 32: 4170
7 李哲, 金祖权, 邵爽爽等. 海洋环境下混凝土中钢筋锈蚀机理及监测技术概述 [J]. 材料导报, 2018, 32: 4170
8 Al-Tikrite A, Hadi M N S. Mechanical properties of reactive powder concrete containing industrial and waste steel fibres at different ratios under compression [J]. Constr. Build. Mater., 2017, 154: 1024
9 Jin W L, Zhou Z D, Mao J H, et al. Experimental study on magnetic field distribution in the fatigue process of corroded steel bars [J]. Ocean Eng., 2016, 34(5): 65
9 金伟良, 周峥栋, 毛江鸿等. 锈蚀钢筋在疲劳荷载作用下压磁场分布研究 [J]. 海洋工程, 2016, 34(5): 65
10 Li J. Effect of negative difference rate and corrosion of hot rolled ribbed steel bar on steel bar performance [A]. Academic Seminar on Railway and Construction Steel [C]. Huangshan, 2013: 311
10 李军. 热轧带肋钢筋负差率及锈蚀对钢筋性能的影响 [A]. 2013年铁路和建筑用钢学术研讨会论文集 [C]. 黄山, 2013: 311
11 Liu J T, Zheng M Q. Climatic characteristics of strong and very strong sandstorms in the middle and west parts of Inner Mongolia [J]. Plateau Meteor., 2003, 22: 51
11 刘景涛, 郑明倩. 内蒙古中西部强和特强沙尘暴的气候学特征 [J]. 高原气象, 2003, 22: 51
12 Cai C X, Jiang W M, Huang S H, et al. Chemical characteristic of two duststorms in the south-east coastal area of China and its possible origin [J]. Plateau Meteor., 2000, 19: 179
12 蔡晨霞, 蒋维楣, 黄世鸿等. 我国东南沿海两次沙尘的化学特征及其源地探讨 [J]. 高原气象, 2000, 19: 179
13 Ma Z H, Wang J. Progress on study of erosion of military equipments by sand and dust [J]. Corros. Sci. Prot. Technol., 2005, 17: 112
13 马志宏, 汪浚. 砂尘环境中军用装备磨损腐蚀进展的研究 [J]. 腐蚀科学与防护技术, 2005, 17: 112
14 Hao Y H, Xing Y M, Zhao Y R, et al. Erosion mechanism and evaluation method of steel structure coating eroded under sandstorm environment [J]. J. Build. Mater., 2011, 14: 345
14 郝贠洪, 邢永明, 赵燕茹等. 风沙环境下钢结构涂层侵蚀机理及评价方法 [J]. 建筑材料学报, 2011, 14: 345
15 Hao Y H, Xing Y M, Feng Y J, et al. Research on anti-erosion mechanical properties of steel structure coating [J]. J. Build. Mater., 2013, 16: 1092
15 郝贠洪, 邢永明, 冯玉江等. 钢结构表面涂层材料抗风沙冲蚀力学性能研究 [J]. 建筑材料学报, 2013, 16: 1092
16 Li L, Wei T C, Liu M W, et al. Research progress on erosion wear mechanism and anti-erosion coatings [J]. J. Chongqing Jiaotong Univ. (Nat. Sci.), 2019, 38(8): 70
16 李力, 魏天酬, 刘明维等. 冲蚀磨损机理及抗冲蚀涂层研究进展 [J]. 重庆交通大学学报 (自然科学版), 2019, 38(8): 70
17 Yao M J, Li C F, He J B, et al. Progresses of anti-erosion coatings [J]. Mater. Rev., 2015, 29: 283
17 姚梦佳, 李春福, 何俊波等. 抗冲蚀磨损涂层的研究进展 [J]. 材料导报: 纳米与新材料专辑, 2015, 29: 283
18 Ren Y. Erosion wear mechanism and evaluation of steel-structure coating in sandstorm [D]. Hohhot: Inner Mongolia University of Technology, 2014
18 任莹. 钢结构涂层受风沙环境冲蚀机理和损伤程度评价研究 [D]. 呼和浩特: 内蒙古工业大学, 2014
19 Li S Z, Dong X L. Erosion Wear and Fretting Wear of Materials [M]. Beijing: Mechanical Industry Press, 1987
19 李诗卓, 董祥林. 材料的冲蚀磨损与微动磨损 [M]. 北京: 机械工业出版社, 1987
20 Ballout Y, Mathis J A, Talia J E. Solid particle erosion mechanism in glass [J]. Wear, 1996, 196: 263
21 Finnie I. Erosion of surfaces by solid particles [J]. Wear, 1960, 3: 87
22 Hao Y H, Ren Y, Duan G L, et al. Erosion mechanism and evaluation of steel structure coating eroded under sandstorm environment [J]. Tribology, 2014, 34: 357
22 郝贠洪, 任莹, 段国龙等. 钢结构表面涂层受风沙冲蚀机理和评价方法 [J]. 摩擦学学报, 2014, 34: 357
23 Yang S. The development of high-strength steel and the research of anti-corrosion resistance [D]. Xi'an: Xi'an University of Architecture and Technology, 2015
23 杨森. 高强度钢筋开发及抗锈蚀性研究 [D]. 西安: 西安建筑科技大学, 2015
24 Ding G Q, Zhang B. Research progress of atmospheric corrosion of steels in natural environment [J]. Equip. Environ. Eng., 2010, 7(3): 42
24 丁国清, 张波. 钢在自然环境中的大气腐蚀研究进展 [J]. 装备环境工程, 2010, 7(3): 42
25 Zhang Q C, Wu J S. Current status of R&D work on weathering steel [J]. Mater. Rev., 2000, 14(7): 12
25 张全成, 吴建生. 耐侯钢的研究与发展现状 [J]. 材料导报, 2000, 14(7): 12
26 Liu Z. Discussion on atmospheric corrosion of weathering steel and carbon steel [J]. China High-Tech Enterprises, 2015, (7): 85
26 柳喆. 耐候钢和碳钢大气腐蚀探讨 [J]. 中国高新技术企业, 2015, (7): 85
27 Zhang Q C, Wu J S, Yang X F, et al. Investigation of accelerated laboratory tests for weathering steel [J]. Mater. Prot., 2002, 35(3): 21
27 张全成, 吴建生, 杨晓芳等. 耐大气腐蚀用钢实验室加速腐蚀的研究 [J]. 材料保护, 2002, 35(3): 21
28 Yang X F, Zheng W L. Analysis on the corrosion rust of weathering steel and carbon steel exposed to atmosphere for two years [J]. Corros. Prot., 2002, 23: 97
28 杨晓芳, 郑文龙. 暴露2年的碳钢与耐候钢表面锈层分析 [J]. 腐蚀与防护, 2002, 23: 97
29 Bavarian B, Ikder Y, Samimi B, et al. Comparison of the corrosion protection effectiveness of vapor corrosion inhibitors and dry air system [A]. Corrosion 2015 Conference [C]. Dallas, Texas, 2015: 10
30 Wang X J. Research on the behaviors and mechanism of the rust layer evolution of the early stages of atmospheric corrosion for metals [D]. Beijing: China Academy of Machinery Science and Technology, 2013
30 王秀静. 金属材料大气环境早期腐蚀行为及锈层演化机制研究 [D]. 北京: 机械科学研究总院, 2013
31 Boden P J. Effect of concentration, velocity and temperature [A]. Corrosion [M]. 3rd Ed. New York: Elsevier, 1994
32 Liu J Z. A review of carbonation in reinforced concrete (1): Mechanism of carbonation and evaluative methods [J]. Concrete, 2005, (11): 10
32 柳俊哲. 混凝土碳化研究与进展 (1)—碳化机理及碳化程度评价 [J]. 混凝土, 2005, (11): 10
33 Li G, Yuan Y S, Geng O. Influences of climate conditions to the concrete carbonization rates [J]. Concrete, 2004, (11): 49
33 李果, 袁迎曙, 耿欧. 气候条件对混凝土碳化速度的影响 [J]. 混凝土, 2004, (11): 49
34 Papadakis V G, Vayenas C G, Fardis M N. Fundamental modeling and experimental investigation of concrete carbonation [J]. ACI Mater. J., 1991, 88: 363
35 Roberge P R. Handbook of Corrosion Engineering [M]. New York: McGraw-Hill, 2000
36 Smart N G, Gamboa-Aldeco M, Bockris J O M. Corrosion mechanisms of iron in concentrated acidic zinc chloride media [J]. Corros. Sci., 1993, 34: 759
37 Enke C G. Werkstoffe und korrosion [J]. Mater. Corros., 1972, 23: XLIII
38 Pacheco A M G, Teixeira M G I B, Ferreira M G S. Initial stages of chloride induced atmospheric corrosion of iron: an infrared spectroscopic study [J]. Br. Corros. J., 1990, 25: 57
39 Refait P, Benali O, Abdelmoula M, et al. Formation of 'ferric green rust' and/or ferrihydrite by fast oxidation of iron (II-III) hydroxychloride green rust [J]. Corros. Sci., 2003, 45: 2435
40 Legrand L, Sagon G, Lecomte S, et al. A Raman and infrared study of a new carbonate green rust obtained by electrochemical way [J]. Corros. Sci., 2001, 43: 1739
41 Refait P, Memet J B, Bon C, et al. Formation of the Fe(II)-Fe(III) hydroxysulphate green rust during marine corrosion of steel [J]. Corros. Sci., 2003, 45: 833
42 Géhin A, Ruby C, Abdelmoula M, et al. Synthesis of Fe(II-III) hydroxysulphate green rust by coprecipitation [J]. Solid State Sci., 2002, 4: 61
43 Ruby C, Géhin A, Abdelmoula M, et al. Coprecipitation of Fe(II) and Fe(III) cations in sulphated aqueous medium and formation of hydroxysulphate green rust [J]. Solid State Sci., 2003, 5: 1055
44 Hong N F. Corrosion in water environments and durability of concrete [J]. Corros. Prot., 2006, 27: 174
44 洪乃丰. 水环境腐蚀与混凝土的耐久性 [J]. 腐蚀与防护, 2006, 27: 174
45 Odokuma L O, Ugboma C J. Microbial corrosion of steel coupons in a freshwater habitat in the Niger Delta [J]. J. Ecol. Nat. Environ., 2012, 4: 42
46 Cao G, Gao C, Gan F X. Corrosion behaviors of carbon steel in fresh water [J]. Equip. Environ. Eng., 2006, 3(1): 46
46 曹刚, 高翠, 甘复兴. 碳钢在淡水环境中的腐蚀行为 [J]. 装备环境工程, 2006, 3(1): 46
47 Zhang W Y. Corrosion and prevention of hydraulic steel gate in freshwater environment [J]. Surf. Technol., 2001, 30(4): 20
47 张文渊. 淡水环境中水工钢闸门的腐蚀与防护 [J]. 表面技术, 2001, 30(4): 20
48 Yang Z K. Corrosion and its control of steel radiator [J]. Heat. Vent. Air Cond., 2001, 31(1): 21
48 杨志宽. 钢制散热器腐蚀与控制 [J]. 暖通空调, 2001, 31(1): 21
49 Zhu Y X, Zhu X C, Ge Y, et al. Study on corrosion behavior of steel in flowing freshwater [J]. Hydro-Sci. Eng., 2002, (2): 7
49 朱雅仙, 朱锡昶, 葛燕等. 流动淡水中钢的腐蚀行为研究 [J]. 水利水运工程学报, 2002, (2): 7
50 Beech I B. Biocorrosion: Role of sulfate reducing bacteria [A]. Encyclopedia of Environmental Microbiology [M]. New York: John Wiley & Sons, Inc., 2003
51 Dinh H T, Kuever J, Mußmann M, et al. Iron corrosion by novel anaerobic microorganisms [J]. Nature, 2004, 427: 829
52 Hamilton W A. Microbially influenced corrosion as a model system for the study of metal microbe interactions: A unifying electron transfer hypothesis [J]. Biofouling, 2003, 19: 65
53 Lv H, Wei C F, Liang B F, et al. Analysis on causes of high corrosion rate in circulating water system of chemical fertilizer plant [J]. Petrochem. Technol. Appl., 2000, 18: 362
53 吕红, 魏存发, 梁宝锋等. 大化肥循环水系统腐蚀率高的原因剖析 [J]. 石化技术与应用, 2000, 18: 362
54 Gibson G R. Physiology and ecology of the sulphate-reducing bacteria [J]. J. Appl. Bacteriol., 1990, 69: 769
55 Zhu R X, Na J Y, Guo S W, et al. Corrosion mechanism of sulfate-reducing bacteria [J]. J. Air Force Eng. Univ. (Nat. Sci. Ed.), 2000, 1(3): 10
55 朱绒霞, 那静彦, 郭生武等. 硫酸盐还原菌的腐蚀机理 [J]. 空军工程大学学报 (自然科学版), 2000, 1(3): 10
56 Xu Q, Zhan S L, Zhang Q L, et al. Preparation and properties of nano-silicone marine reinforced concrete permeable protective coating [J]. Chin. J. Mater. Res., 2014, 28: 443
56 徐强, 詹树林, 张启龙等. 海洋工程钢筋混凝土纳米硅渗透型防护剂的制备和性能 [J]. 材料研究学报, 2014, 28: 443
57 Wu Q L. Research on flexural RC components exposed to marine environments: durability and life prediction [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010
57 吴庆令. 海洋环境钢筋混凝土受弯构件的耐久性与寿命预测 [D]. 南京: 南京航空航天大学, 2010
58 Tian H W, Li W H, Zong C Z, et al. Corrosion mechanism and research progress of anti-corrosion coatings for reinforced concrete used in marine environment [J]. Paint Coat. Ind., 2008, 38(8): 62
58 田惠文, 李伟华, 宗成中等. 海洋环境钢筋混凝土腐蚀机理和防腐涂料研究进展 [J]. 涂料工业, 2008, 38(8): 62
59 Morris W, Vazquez M. Corrosion of reinforced concrete exposed to marine environment [J]. Corros. Rev., 2002, 20: 469
60 Zhu H W, Yu H F, Ma H Y. Electrochemical study on effect of rust inhibitors on corrosion of reinforcing bar in concrete in marine environment [J]. J. Southeast Univ. (Nat. Sci. Ed.), 2020, 50: 109
60 朱海威, 余红发, 麻海燕. 阻锈剂对海洋环境下混凝土中钢筋腐蚀影响的电化学研究 [J]. 东南大学学报 (自然科学版), 2020, 50: 109
61 Yu Z T, Han D J. Method of carbonization reliability assessment for existing reinforced concrete bridges [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2004, 32(2): 50
61 禹智涛, 韩大建. 既有钢筋混凝土桥梁碳化可靠度评估方法 [J]. 华南理工大学学报 (自然科学版), 2004, 32(2): 50
62 Song L Y. Study on chloride corrosion durability of reinforced concrete marine structures [D]. Dalian: Dalian University of Technology, 2009
62 宋立元. 海洋钢筋混凝土结构氯离子腐蚀耐久性研究 [D]. 大连: 大连理工大学, 2009
63 Liang Y N, Yuan Y S. Test study on bond behavior of corroded concrete and steel bars [J]. Concrete, 2008, (2): 20
63 梁咏宁, 袁迎曙. 受硫酸盐腐蚀混凝土与钢筋黏结性能的研究 [J]. 混凝土, 2008, (2): 20
64 Artigas A, Monsalve A, Sipos K, et al. Development of accelerated wet-dry cycle corrosion test in marine environment for weathering steels [J]. Corros. Eng. Sci. Technol., 2015, 50: 628
65 Melchers R E, Li C Q. Reinforcement corrosion in concrete exposed to the North Sea for more than 60 years [J]. Corrosion, 2009, 65: 554
66 Han J Y, Dai C, Gao Z H, et al. Microorganism corrosion of concrete [J]. Mater. Rev., 2002, 16(10): 42
66 韩静云, 戴超, 郜志海等. 混凝土的微生物腐蚀 [J]. 材料导报, 2002, 16(10): 42
67 Li J C M. Microstructure and Properties of Materials [M]. Singapore: World Scientific, 1996
68 Miller F M, Tang F J. The distribution of sulfur in present-day clinkers of variable sulfur content [J]. Cem. Concr. Res., 1996, 26: 1821
69 Ormellese M, Berra M, Bolzoni F, et al. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures [J]. Cem. Concr. Res., 2006, 36: 536
70 Hussain S E, Al-Gahtani A S, Rasheeduzzafar. Chloride threshold for corrosion of reinforcement in concrete [J]. ACI Mater. J., 1996, 93: 534
71 Pavan I, Reddy K, Pai V. Repair and rehabilitation of concrete pavements [J]. Int. J. Eng. Res. Dev., 2015, 11: 2278
72 Mohammed T U, Otsuki N, Hamada H. Corrosion of steel bars in cracked concrete under marine environment [J]. J. Mater. Civil Eng., 2003, 15: 460
73 Skoglund P, Silfwerbrand J, Holmgren J, et al. Chloride redistribution and reinforcement corrosion in the interfacial region between substrate and repair concrete-a laboratory study [J]. Mater. Struct., 2008, 41: 1001
74 Quraishi M A, Nayak D K, Kumar R, et al. Corrosion of reinforced steel in concrete and its control: An overview [J]. J. Steel Struct. Constr., 2017, 2: 124
75 Mehta P K, Monteiro P J M. Concrete: Microstructure, Properties, and Materials [M]. 4th Ed. New York: McGraw-Hill, 2014
76 Isgor O B, Razaqpur A G. Modelling steel corrosion in concrete structures [J]. Mater. Struct., 2006, 39: 291
77 Raupach M. Corrosion of steel reinforcement in concrete [J]. Mater. Corros., 2009, 60: 77
78 He K, Xu Y F, Tan Y, et al. Review of corrosion behavior of typical nuclear power materials [J]. Shandong Chem. Ind., 2018, 47(22): 61
78 何宽, 徐芸菲, 檀玉等. 核电典型材料的腐蚀行为研究综述 [J]. 山东化工, 2018, 47(22): 61
79 Liu X, Zhao J C, Wang G G, et al. Failure analysis of pipelines and welding joints in nuclear power plant [J]. Fail. Anal. Prev., 2013, 8: 300
79 刘肖, 赵建仓, 王淦刚等. 核电厂管道及焊接接头失效案例综述 [J]. 失效分析与预防, 2013, 8: 300
80 Staehle R W, Gorman J A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 1 [J]. Corrosion, 2003, 59: 931
81 Andresen P L, Ford F P. Prediction of stress corrosion cracking (SCC) in nuclear power systems [A]. Stress Corrosion Cracking [M]. Cambridge: Woodhead Publishing, 2011: 651
82 Peng Q J, Hou J, Takeda Y, et al. Effect of chemical composition on grain boundary microchemistry and stress corrosion cracking in Alloy 182 [J]. Corros. Sci., 2013, 67: 91
83 Wang Y. Study on surface contamination and surface modification of nuclear grade materials [D]. Dalian: Dalian University of Technology, 2010
83 王永. 核级材料的表面污染及表面改性研究 [D]. 大连: 大连理工大学, 2010
84 Deng P. Irradiation assisted corrosion and stress corrosion of nuclear-grade 304 stainless steel in high temperature and high pressure water [D]. Hefei: University of Science and Technology of China, 2018
84 邓平. 核级304不锈钢辐照促进高温高压水环境腐蚀与应力腐蚀研究 [D]. 合肥: 中国科学技术大学, 2018
85 Hu X, Neville A. The electrochemical response of stainless steels in liquid-solid impingement [J]. Wear, 2005, 258: 641
86 Barker K C, Ball A. Synergistic abrasive—corrosive wear of chromium containing steels [J]. Br. Corros. J., 1989, 24: 222
87 Ilevbare G O, Burstein G T. The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels [J]. Corros. Sci., 2001, 43: 485
88 Zheng Z B, Zheng Y G, Sun W H, et al. Erosion-corrosion of HVOF-sprayed Fe-based amorphous metallic coating under impingement by a sand-containing NaCl solution [J]. Corros. Sci., 2013, 76: 337
89 Wang G H. Influence of the sigma phase precipitation on the microstructure and properties in duplex stainless steel [J]. China Metall., 2011, 21(6): 15
89 王国华. σ相的析出对双相不锈钢组织性能的影响 [J]. 中国冶金, 2011, 21(6): 15
90 Wu X Q, Jing H M, Zheng Y G, et al. Resistance of Mo-bearing stainless steels and Mo-bearing stainless-steel coating to naphthenic acid corrosion and erosion-corrosion [J]. Corros. Sci., 2004, 46: 1013
91 Bertrand N, Desgranges C, Poquillon D, et al. Iron oxidation at low temperature (260~500 ℃) in air and the effect of water vapor [J]. Oxid. Met., 2010, 73: 139
92 Zhang B, Cao J, Guo Z, et al. Effect of cooling bed temperature on the corrosion resistance of surface oxide scale of rebar [J]. J. Anhui Univ. Technol. (Nat. Sci.), 2018, 35: 301
92 张波, 曹杰, 郭湛等. 上冷床温度对螺纹钢筋表面氧化铁皮抗锈蚀性能的影响 [J]. 安徽工业大学学报 (自然科学版), 2018, 35: 301
93 Chen R Y. Mechanism of iron oxide scale reduction in 5%H2-N2 gas at 650~900 ℃ [J]. Oxid. Met., 2017, 88: 687
94 Chen R Y, Yuen W Y D. Longer term oxidation kinetics of low carbon, low silicon steel in 17H2O-N2 at 900 ℃ [J]. Oxid. Met., 2016, 85: 489
95 Huang B H, Xu X L, Liu J, et al. A method for using ionic liquids as corrosion inhibitors for carbon steel [P]. Chin. Pat., 201010019346.8, 2010
95 黄宝华, 徐效陵, 刘军等. 一种离子液体用作碳钢缓蚀剂的方法 [P]. 中国专利, 201010019346.8, 2010)
[1] 李光泉, 李广芳, 王俊强, 张天遂, 张斐, 蒋习民, 刘宏芳. 临海管道微生物腐蚀损伤机制与防护[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[2] 周浩, 王胜利, 刘雪峰, 尤世界. 新型复合缓蚀剂对青铜文物的防腐蚀研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 517-522.
[3] 孙晓光, 王子晗, 徐学旭, 韩晓辉, 李刚卿, 刘智勇. 工业大气环境对Al-Mg-Si合金腐蚀疲劳特性的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 501-507.
[4] 焦洋, 张胜寒, 檀玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(4): 417-428.
[5] 任莹, 赵会军, 周昊, 张建伟, 刘雯, 杨足膺, 王磊. 粒径和温度对20号钢冲刷腐蚀协同作用的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 508-516.
[6] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[7] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[8] 乔忠立, 王玲, 史艳华, 杨众魁. 14Cr1MoR钢焊接接头组织及耐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[9] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[10] 刘骁飞, 王春雨, 周俊锋, 金浩哲, 王超. 胺液脱除CO2系统空冷器腐蚀规律研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 389-394.
[11] 熊义, 刘光明, 占阜元, 毛晓飞, 罗钦, 洪嘉, 倪进飞, 刘永强. 3种热喷涂涂层在模拟气氛/煤灰环境下的热腐蚀及失效行为[J]. 中国腐蚀与防护学报, 2021, 41(3): 369-375.
[12] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[13] 马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[14] 左勇, 秦越强, 申淼, 杨新梅. Cr2+/Cr3+对FLiNaK熔盐体系电偶腐蚀抑制行为及机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 341-345.
[15] 李瑞涛, 肖博, 刘晓, 朱忠亮, 程义, 李俊菀, 曹杰玉, 丁海民, 张乃强. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.