Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (5): 451-459    DOI: 10.11902/1005.4537.2017.159
  研究报告 本期目录 | 过刊浏览 |
模拟工业环境下直流电场对金属Zn腐蚀机理的影响
张鑫1,戴念维2,杨燕1,张俊喜1()
1 上海电力学院环境与化学工程学院 上海 200090
2 复旦大学材料科学系 上海 200433
Effect of Direct Current Electric Field on Corrosion Mechanism of Zn Exposed to Simulated Industrial Environment
Xin ZHANG1,Nianwei DAI2,Yan YANG1,Junxi ZHANG1()
1 School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
2 Department of Materials Science, Fudan University, Shanghai 200433, China
全文: PDF(1445 KB)   HTML
摘要: 

采用失重法,电化学测试技术,X射线衍射 (XRD) 并结合扫描电镜 (SEM) 研究了模拟工业环境下直流电场对金属Zn在30 d内腐蚀行为的影响。结果表明,模拟工业环境下,在一定暴露时间内,直流电场强度越大,Zn的腐蚀速率越大。随着直流电场的介入,Zn的阴极还原过程与阳极溶解过程均有提高,从而腐蚀速率增加。直流电场对于Zn腐蚀行为的影响本质上归结于电场对溶液中离子分布的影响,进而改变了腐蚀产物的结构,促进了腐蚀过程的进行。

关键词 Zn直流电场大气腐蚀腐蚀产物离子迁移    
Abstract

The effect of a direct current (DC) electric field on the corrosion of Zn exposed in a simulated industrial environment for a period of 30 d was studied by using weight loss and electrochemical tests, XRD and SEM techniques. The results show that the corrosion rate of Zn increased with the increase of DC electric field intensity. With an applied DC electric field, the cathodic reduction process and the anodic dissolution reaction process of Zn in the simulated industrial environment can be accelerated. The influence of the DC electric field on the corrosion behavior of Zn can be attributed to that the distribution of ions in the solution may be altered by the electric field, thus, it can change the reaction site of the formation and also the structure of the corrosion product. Then, the corrosion rate of Zn in the simulated industrial environment can be increased.

Key wordszinc    direct current (DC) electric field    atmospheric corrosion    corrosion product    ion migration
收稿日期: 2017-03-27     
基金资助:国家自然科学基金 (51271110)
作者简介: 张鑫,男,1991年生,硕士生

引用本文:

张鑫,戴念维,杨燕,张俊喜. 模拟工业环境下直流电场对金属Zn腐蚀机理的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
Xin ZHANG, Nianwei DAI, Yan YANG, Junxi ZHANG. Effect of Direct Current Electric Field on Corrosion Mechanism of Zn Exposed to Simulated Industrial Environment. Journal of Chinese Society for Corrosion and protection, 2017, 37(5): 451-459.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.159      或      https://www.jcscp.org/CN/Y2017/V37/I5/451

图1  基体样品示意图
图2  模拟工业环境中直流电场作用下的实验装置图
图3  模拟工业环境不同暴露时间下Zn的腐蚀失重与直流电场强度的函数关系
图4  在不同直流电场环境下不同暴露时间的Zn样品的腐蚀极化曲线
Time / d E / kVm-1 Ba / Vdec-1 bc / Vdec-1 Icorr / μAcm-2 Ecorr (vs SCE) / V
7 0 247.33 245.10 35.70 -1.037
100 190.33 72.93 35.93 -1.058
200 69.34 93.60 36.04 -1.052
400 76.69 121.19 36.20 -1.036
12 0 86.60 216.81 37.45 -1.035
100 124.36 40.22 39.23 -1.053
200 130.55 53.18 42.18 -1.051
400 132.23 65.17 44.04 -1.049
20 0 78.55 129.63 38.98 -1.038
100 82.71 71.94 41.98 -1.043
200 85.83 74.33 44.05 -1.035
400 72.73 66.99 48.62 -1.040
30 0 62.21 82.06 41.74 -1.056
100 85.83 128.45 45.26 -1.038
200 71.97 66.66 48.89 -1.044
400 80.42 70.94 52.36 -1.033
表1  不同电场强度下金属Zn在不同实验时间的极化曲线拟合参数
图5  暴露在不同直流电场条件下7 d的Zn腐蚀产物XRD谱
图6  暴露在不同直流电场条件下12 d的Zn腐蚀产物XRD谱
图7  暴露在不同直流电场条件下20 d的Zn腐蚀产物XRD谱
图8  暴露在不同直流电场条件下30 d的Zn腐蚀产物XRD谱
图9  暴露至第7 d时不同直流电场强度环境下Zn表面腐蚀产物的SEM像
图10  暴露至第20 d时不同直流电场强度环境下Zn表面腐蚀产物的SEM像
图11  暴露至第30 d时不同直流电场强度环境下Zn表面腐蚀产物的SEM像
图12  模拟工业环境下,Zn的腐蚀产物以及离子分布示意图
[1] de la Fuente D, Casta?o D J G, Morcillo M. Long-term atmospheric corrosion of zinc[J]. Corros. Sci., 2007, 49: 1420
[2] Li M C, Jiang L L, Zhang W Q, et al.Electrochemical corrosion behavior of nanocrystalline zinc coatings in 3.5%NaCl solutions[J]. J. Solid State Electrochem., 2007, 11: 1319
[3] Marques A G, Taryba M G, Pan?o A S, et al.Application of scanning electrode techniques for the evaluation of iron-zinc corrosion in nearly neutral chloride solutions[J]. Corros. Sci., 2016, 104: 123
[4] Souto R M, Fernández-Mérida L, González S, et al.Comparative EIS study of different Zn-based intermediate metallic layers in coil-coated steels[J]. Corros. Sci., 2006, 48: 1182
[5] Ramanauskas R, Muleshkova L, Maldonado L, et al.Characterization of the corrosion behaviour of Zn and Zn alloy electrodeposits: atmospheric and accelerated tests[J]. Corros. Sci., 1998, 40: 401
[6] Svensson J E, Johansson L G.A laboratory study of the effect of ozone, nitrogen dioxide, and sulfur dioxide on the atmospheric corrosion of zinc[J]. J. Electrochem. Soc., 1993, 140: 2210
[7] Graedel T E.Corrosion mechanisms for zinc exposed to the atmosphere[J]. J. Electrochem. Soc., 1989, 136: 193C
[8] Diler E, Lescop B, Rioual S, et al.Initial formation of corrosion products on pure zinc and MgZn2 examinated by XPS[J]. Corros. Sci., 2014, 79: 83
[9] Anderson E A.The atmospheric corrosion of rolled zinc [R]. STP 175. Philadelphia, PA: ASTM, 1956: 126
[10] Quintana P, Veleva L, Cauich W, et al.Study of the composition and morphology of initial stages of corrosion products formed on Zn plates exposed to the atmosphere of southeast Mexico[J]. Appl. Surf. Sci., 1996, 99: 325
[11] Qu Q, Yan C W, Wan Y, et al.Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc[J]. Corros. Sci., 2002, 44: 2789
[12] Wang P, Zhang D, Qiu R, et al.Super-hydrophobic film prepared on zinc and its effect on corrosion in simulated marine atmosphere[J]. Corros. Sci., 2013, 69: 23
[13] Azmat N S, Ralston K D, Muddle B C, et al.Corrosion of Zn under acidified marine droplets[J]. Corros. Sci., 2011, 53: 1604
[14] Vera R, Delgado D, Rosales B M.Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part 1. Aluminium and AA6201 alloy[J]. Corros. Sci., 2006, 48: 2882
[15] Vera R, Delgado D, Rosales B M.Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part 2. Pure copper[J]. Corros. Sci., 2007, 49: 2329
[16] Chen Z Y, Persson D, Leygraf C.Initial NaCl-particle induced atmospheric corrosion of zinc-Effect of CO2 and SO2[J]. Corros. Sci., 2008, 50: 111
[17] Casta?o J G, de la Fuente D, Morcillo M. A laboratory study of the effect of NO2 on the atmospheric corrosion of zinc[J]. Atmos. Environ., 2007, 41: 8681
[18] Chen Y Y, Chung S C, Shih H C.Studies on the initial stages of zinc atmospheric corrosion in the presence of chloride[J]. Corros. Sci., 2006, 48: 3547
[19] Lalvani S B, Zhang G.The corrosion of carbon steel in a chloride environment due to periodic voltage modulation: Part II[J]. Corros. Sci., 1995, 37: 1583
[20] Wendt J L, Chin D T.The a.c. corrosion of stainless steel-II. The breakdown of passivity of ss304 in neutral aqueous solutions[J]. Corros. Sci., 1985, 25: 889
[21] Bertolini L, Carsana M, Pedeferri P.Corrosion behaviour of steel in concrete in the presence of stray current[J]. Corros. Sci., 2007, 49: 1056
[22] Huang H L, Guo X P, Zhang G A, et al.The effects of temperature and electric field on atmospheric corrosion behaviour of PCB-Cu under absorbed thin electrolyte layer[J]. Corros. Sci., 2011, 53: 1700
[23] Huang H L, Guo X P, Zhang G A, et al.Effect of direct current electric field on atmospheric corrosion behavior of copper under thin electrolyte layer[J]. Corros. Sci., 2011, 53: 3446
[24] Dai N W, Zhang J X, Chen Q M, et al.Effect of the direct current electric field on the initial corrosion of steel in simulated industrial atmospheric environment[J]. Corros. Sci., 2015, 99: 295
[25] Yuan X J, Zhang J X, Chen Q M, et al.Electrochemical process of Zn electrode covered with thin electrolyte layer under external electric field[J]. Corros. Sci. Prot. Technol., 2014, 26: 197
[25] (原徐杰, 张俊喜, 陈启萌等. 电场作用下金属Zn在薄液膜下的电极过程研究[J]. 腐蚀科学与防护技术, 2014, 26: 197)
[26] Xu Y J, Zhang J X, Chen Q M, et al.Corrosion behavior of Zinc covered with thin electrolyte layers under external electric field[J]. J. Electrochem., 2013, 19: 430
[26] (原徐杰, 张俊喜, 陈启萌等. 电场作用下金属锌在薄液膜下的腐蚀电化学研究[J]. 电化学, 2013, 19: 430)
[27] Tanaka H, Takeuchi Y, Ishikawa T, et al.Influence of anions on the formation and structure of artificial zinc rusts[J]. Corros. Sci., 2011, 53: 2502
[28] Ishikawa T, Murai M, Kandori K, et al.Structure and composition of artificially synthesized rusts of Zn-Fe and Zn-Ti alloys[J]. Corros. Sci., 2006, 48: 3172
[29] Mouanga M, Ber?ot P.Comparison of corrosion behaviour of zinc in NaCl and in NaOH solutions; Part II: electrochemical analyses[J]. Corros. Sci., 2010, 52: 3993
[30] Muster T H, Neufeld A K, Cole I S.The protective nature of passivation films on zinc: Wetting and surface energy[J]. Corros. Sci., 2004, 46: 2337
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[4] 杨明馨, 高阳, 王辉. 添加Zn2+对ZIRLO合金在模拟压水堆一回路含LiOH和H3BO3水溶液工况下耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 199-204.
[5] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[6] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[7] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[8] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[9] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[10] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[11] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[12] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[13] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[14] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[15] 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.