Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (2): 202-208    DOI: 10.11902/1005.4537.2020.099
  研究报告 本期目录 | 过刊浏览 |
电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响
张慧云1,2, 郑留伟1,3, 孟宪明2, 梁伟1,3()
1.太原理工大学材料科学与工程学院 太原 030024
2.山西工程职业学院机械制造工程系 太原 030009
3.太原理工大学分析测试中心 太原 030024
Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement Sensitivity of Cr15 Ferritic and 304 Austenitic Stainless Steels
ZHANG Huiyun1,2, ZHENG Liuwei1,3, MENG Xianming2, LIANG Wei1,3()
1.School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2.Department of Mecharical Marfacturing Engineering, Shanxi Engineering Vocational College, Taiyuan 030009, China
3.Instrumental Analysis Center of Taiyuan University of Technology, Taiyuan 030024, China
全文: PDF(12178 KB)   HTML
摘要: 

研究了充氢时间、充氢电流密度、晶体结构对不锈钢氢脆敏感性的影响。结果表明:对于铁素体不锈钢,随着充氢时间的延长、电流密度的增大,塑性显著降低,氢脆敏感性大幅度增加;通过SEM观察实验钢断口形貌,断裂类型由韧性断裂转变为脆性断裂。而相同条件下,奥氏体不锈钢氢脆敏感性较低,抗氢脆性能较好。充氢后实验钢表面存在大量H,且氢含量随试样深度逐渐降低,晶界可能作为氢陷阱影响实验钢的氢脆敏感性。

关键词 电化学充氢铁素体不锈钢奥氏体不锈钢氢脆敏感性    
Abstract

The effect of the charging time and current density of the electrochemical hydrogen charging process, as well as the crystallographic structure of the steel on the hydrogen embrittlement sensitivity of stainless steels were assessed via slow strain rate tensile test. The results showed that for ferritic stainless steel, with the increase of hydrogen charging time and current density, the plasticity decreases significantly, and the sensitivity of hydrogen embrittlement increases greatly. The SEM observation results of the fracture morphology show that the fracture type changed from ductile fracture to brittle fracture. As a contrast, under the same conditions, the sensitivity of hydrogen embrittlement of austenitic stainless steel was lower, and the resistance of hydrogen embrittlement was higher. It was found that there was a large amount of hydrogen on the surface of the tested steel after hydrogen charging, and the hydrogen content gradually decreased with the depth of the sample. As hydrogen traps, grain boundaries may affect the hydrogen embrittlement sensitivity of steels.

Key wordselectrochemical hydrogen charging    ferritic stainless steel    austenitic stainless steel    hydrogen embrittlement sensitivity
收稿日期: 2020-06-10     
ZTFLH:  TG142.71  
基金资助:山西省高等学校科技创新项目(2019L0994);山西工程职业学院重点课题(KYF-201903)
通讯作者: 梁伟     E-mail: liangwei@tyut.edu.cn
Corresponding author: LIANG Wei     E-mail: liangwei@tyut.edu.cn
作者简介: 张慧云,女,1987年生,博士生

引用本文:

张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
Huiyun ZHANG, Liuwei ZHENG, Xianming MENG, Wei LIANG. Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement Sensitivity of Cr15 Ferritic and 304 Austenitic Stainless Steels. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 202-208.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.099      或      https://www.jcscp.org/CN/Y2021/V41/I2/202

SteelCSiMnPSVCrNiFe
Cr150.0150.60.40.0050.0040.215.2---Bal.
3040.040.41.140.0260.002---18.248Bal.
表1  实验用钢的化学成分
图1  室温拉伸试样尺寸
图2  电化学充氢示意图
图3  Cr15不锈钢和304奥氏体不锈钢的IPF图
图4  Cr15不锈钢和304不锈钢的XRD谱
SampleRel / MPaRm / MPaA / %IHE (δ) / %
AH-free32047032---
B10 mA/cm2, 24 h3554901650.0
C10 mA/cm2, 48h3755001262.5
D20 mA/cm2, 24 h3504951456.2
表2  充氢前后Cr15不锈钢钢拉伸实验结果
图5  不同充氢条件下Cr15不锈钢力学性能的变化
图6  不同充氢参数下Cr15不锈钢试样拉伸断口形貌
图7  充氢后Cr15不锈钢表面氢分布
ConditionA / %IHE(δ) / %
H-free56---
20 mA/cm2, 24 h527.14
50 mA/cm2, 48 h5010.71
100 mA/cm2, 96 h5010.71
表3  充氢前后304不锈钢拉伸实验结果
图8  充氢后Cr15铁素体不锈钢断口形貌
图9  充氢后304奥氏体不锈钢断口形貌
图10  电化学充氢后304不锈钢中H的分布
1 Michler T, San Marchi C, Naumann J, et al. Hydrogen environment embrittlement of stable austenitic steels [J]. Int. J. Hydrogen Energy, 2012, 37: 16231
2 San Marchi C, Michler T, Nibur K A, et al. On the physical differences between tensile testing of type 304 and 316 austenitic stainless steels with internal hydrogen and in external hydrogen [J]. Int. J. Hydrog. Energy, 2010, 35: 9736
3 Kim S M, Chun Y S, Won S Y, et al. Hydrogen embrittlement behavior of 430 and 445NF ferritic stainless steels [J]. Metall. Mater. Trans., 2013, 44A: 1331
4 Tarzimoghadam Z, Rohwerder M, Merzlikin S V, et al. Multi-scale and spatially resolved hydrogen mapping in a Ni-Nb model alloy reveals the role of the δ phase in hydrogen embrittlement of alloy 718 [J]. Acta Mater., 2016, 109: 69
5 Li X G, Gong B M, Deng C Y, et al. Failure mechanism transition of hydrogen embrittlement in AISI 304 K-TIG weld metal under tensile loading [J]. Corros. Sci., 2018, 130: 241
6 Fan Y H, Zhang B, Yi H L, et al. The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel [J]. Acta Mater., 2017, 139: 188
7 Chen Y S, Lu H Z, Liang J T. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates [J]. Science, 2020, 367: 171
8 Zhu X. An investigation into the hydrogen embrittlement mechanism in the 3rd Generation advanced high strength automotive steels employing TRIP effect [D]. Shanghai: Shanghai JiaoTong University, 2016
8 朱旭. 基于TRIP效应的第3代先进高强汽车用钢氢脆机制的研究 [D]. 上海: 上海交通大学, 2016
9 Zhu X, Zhang K, Li W, et al. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels [J]. Mater. Sci. Eng., 2016, A658: 400
10 Jiang W, Gong J M, Wang Y F, et al. Plasticity comparison of 304L austenitic stainless steel before and after electrochemical hydrogen charging [J]. Mater. Mechan. Eng., 2012, 36(2): 28
10 蒋旺, 巩建鸣, 王艳飞等. 电化学充氢前后304L奥氏体不锈钢的塑性对比 [J]. 机械工程材料, 2012, 36(2): 28
11 Lai C L, Tsay L W, Chen C. Effect of microstructure on hydrogen embrittlement of various stainless steels [J]. Mater. Sci. Eng., 2013, A584: 14
12 Lu H H, Guo H K, Du L Y, et al. Formation of intermetallics and its effect on microstructure and mechanical properties of 27Cr-4Mo-2Ni super ferritic steels [J]. Mater. Charact., 2019, 151: 470
13 Bak S H, Ali Abro M, Lee D B. Effect of hydrogen and strain-induced martensite on mechanical properties of AISI 304 stainless steel [J]. Metals, 2016, 6: 169
14 Michler T, Naumann J. Microstructural aspects upon hydrogen environment embrittlement of various bcc steels [J]. Int. J. Hydrogen Energy, 2010, 35: 821
15 Tarzimoghadam Z, Ponge D, Klöwer J, et al. Hydrogen-assisted failure in Ni-based superalloy 718 studied under in situ hydrogen charging: The role of localized deformation in crack propagation [J]. Acta Mater., 2017, 128: 365
16 Fan Y H. Effect of microstructures on the hydrogen embrittlement of stainless steels [D]. Shenyang: University of Science and Technology of China, 2019
16 范宇恒. 不锈钢微观组织结构对其氢脆性能的影响 [D]. 沈阳: 中国科学技术大学, 2019
[1] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[2] 刘希武,赵小燕,崔新安,许兰飞,李晓炜,程荣奇. 304L不锈钢在硝酸-硝酸钠环境中的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[3] 柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
[4] 赵小燕, 刘希武, 崔新安, 于凤昌. 304L不锈钢在稀硝酸环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[5] 孙超, 杨潇, 文玉华. 表面溅射高含铝奥氏体不锈钢合金涂层对316不锈钢抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[6] 段振刚, 张乐福, 王力, 徐雪莲, 石秀强. 注锌对316L奥氏体不锈钢氧化膜成分的影响[J]. 中国腐蚀与防护学报, 2014, 34(3): 249-252.
[7] 梅华生, 王长朋, 张帷, 周漪, 杨王玲. 电化学充氢对X80管线钢在鹰潭土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 388-394.
[8] 张辉,王安祺,武俊伟. 固体氧化物燃料电池金属连接体保护膜层研究进展[J]. 中国腐蚀与防护学报, 2012, 32(5): 357-363.
[9] 尹开锯,邱绍宇,唐睿,洪晓峰,张乐福,张强. 超级奥氏体不锈钢AL-6XN在超临界水中的腐蚀行为[J]. 中国腐蚀与防护学报, 2012, 32(5): 375-380.
[10] 张勇,覃作祥,许鸿吉,常凯,陆兴,佟维. 经济型铁素体不锈钢与耐候钢异种金属接头的耐蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(2): 115-122.
[11] 江克,陈学东,杨铁成,张玮,梁春雷. 典型奥氏体不锈钢高温环烷酸腐蚀行为研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 59-63.
[12] 孙涛,邓博, 徐菊良,李劲,蒋益明. 氮、铌添加对304奥氏体不锈钢电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(6): 421-426.
[13] 徐珊,杜楠,赵晴,叶明阳. 激光电子散斑干涉技术监测奥氏体不锈钢在NaCl溶液中的点蚀敏感性[J]. 中国腐蚀与防护学报, 2010, 30(5): 403-409.
[14] 薛艳;赵国仙;董会;赵大伟. 5Cr油管电化学充氢后的力学行为[J]. 中国腐蚀与防护学报, 2010, 30(1): 89-92.
[15] 陈美玲 刘元栋 杨莉 杨军 高宏. 改性纳米SiC粉体强化铸造奥氏体不锈钢耐点蚀性能的研究[J]. 中国腐蚀与防护学报, 2009, 29(6): 411-414.