|
|
交变载荷频率对MS X65管线钢在H2S介质中腐蚀电化学行为影响 |
戈方宇, 黄峰( ), 袁玮, 肖虎, 刘静 |
武汉科技大学 省部共建耐火材料与冶金国家重点实验室 湖北省海洋工程材料及 服役安全工程技术研究中心 武汉 430081 |
|
Effect of Cyclic Stress Frequency on Corrosion Electrochem-ical Behavior of MS X65 Pipeline Steel in H2S Containing Medium |
GE Fangyu, HUANG Feng( ), YUAN Wei, XIAO Hu, LIU Jing |
The State Key Laboratory of Refractories and Metallurgy, Hubei Engineering Technology Research Center of Marine Materials and Service Safety, Wuhan University of Science and Technology, Wuhan 430081, China |
引用本文:
戈方宇, 黄峰, 袁玮, 肖虎, 刘静. 交变载荷频率对MS X65管线钢在H2S介质中腐蚀电化学行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 187-194.
Fangyu GE,
Feng HUANG,
Wei YUAN,
Hu XIAO,
Jing LIU.
Effect of Cyclic Stress Frequency on Corrosion Electrochem-ical Behavior of MS X65 Pipeline Steel in H2S Containing Medium. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 187-194.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2020.022
或
https://www.jcscp.org/CN/Y2021/V41/I2/187
|
1 |
Cheng A K, Chen N Z. An extended engineering critical assessment for corrosion fatigue of subsea pipeline steels [J]. Eng. Fail. Anal., 2018, 84: 262
|
2 |
Zhao X Y, Huang F, Gan L J, et al. Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of the welded MS X70 pipeline steel in H2S environment [J]. Acta Metall. Sin., 2017, 53: 1579
|
2 |
赵小宇, 黄峰, 甘丽君等. MS X70酸性环境用管线钢焊接接头氢致开裂敏感性及氢捕获效率研究 [J]. 金属学报, 2017, 53: 1579
|
3 |
Yuan W, Huang F, Gan L J, et al. Effect of microstructure on hydrogen induced cracking and hydrogen trapping behavior of X100 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 536
|
3 |
袁玮, 黄峰, 甘丽君等. 显微组织对X100管线钢氢致开裂及氢捕获行为影响 [J]. 中国腐蚀与防护学报, 2019, 39: 536
|
4 |
Zhou C S, Zheng S Q, Chen C F, et al. The effect of the partial pressure of H2S on the permeation of hydrogen in low carbon pipeline steel [J]. Corros. Sci., 2013, 67: 184
|
5 |
Mohtadi-Bonab M A, Ghesmati-Kucheki H. Important factors on the failure of pipeline steels with focus on hydrogen induced cracks and improvement of their resistance: review paper [J]. Met. Mater. Int., 2019, 25: 1109
|
6 |
Mohtadi-Bonab M A, Eskandari M, Szpunar J A. Role of cold rolled followed by annealing on improvement of hydrogen induced cracking resistance in pipeline steel [J]. Eng. Fail. Anal., 2018, 91: 172
|
7 |
Zhang Q C, Huang Y L, Blackwood D J, et al. On the long term estimation of hydrogen embrittlement risks of titanium for the fabrication of nuclear waste container in bentonite buffer of nuclear waste repository [J]. J. Nucl. Mater., 2020, 533: 152092
|
8 |
Kim S J, Jung H G, Kim K Y. Effect of tensile stress in elastic and plastic range on hydrogen permeation of high-strength steel in sour environment [J]. Electrochim. Acta, 2012, 78: 139
|
9 |
Mohtadi-Bonab M A, Eskandari M, Rahman K M M, et al. An extensive study of hydrogen-induced cracking susceptibility in an API X60 sour service pipeline steel [J]. Int. J. Hydrogen Energy, 2016, 41: 4185
|
10 |
Townsend H E Jr. Effects of stress on entry and permeation of hydrogen in iron [J]. Corrosion, 1970, 26: 361
|
11 |
Zhang T M, Zhao W M, Li T T, et al. Comparison of hydrogen embrittlement susceptibility of three cathodic protected subsea pipeline steels from a point of view of hydrogen permeation [J]. Corros. Sci., 2018, 131: 104
|
12 |
Wu W, Li Y, Ji L K, et al. Progress in research on fatigue behavior of pipeline steel [J]. Welded Pipe Tube, 2009, 32(8): 31
|
12 |
武威, 李洋, 吉玲康等. 管线钢疲劳行为研究进展 [J]. 焊管, 2009, 32(8): 31
|
13 |
Mohtadi-Bonab M A, Eskandari M. A focus on different factors affecting hydrogen induced cracking in oil and natural gas pipeline steel [J]. Eng. Fail. Anal., 2017, 79: 351
|
14 |
Zhong Y, Xiao F R, Shan Y Y, et al. Study of relationship between fatigue crack growth rate and fatigue life for pipeline steels [J]. Acta Metall. Sin., 2005, 41: 523
|
14 |
钟勇, 肖福仁, 单以银等. 管线钢疲劳裂纹扩展速率与疲劳寿命关系的研究 [J]. 金属学报, 2005, 41: 523
|
15 |
Hagiwara N, Méziere Y, Oguchi N, et al. Fatigue behavior of steel pipes containing idealized flaws under fluctuating pressure [J]. JSME Int. J., 1999, 42A: 610
|
16 |
Shen Y. The influence of the fluctuating stress to the SCC behavior of X80 pipeline steel in near neutral environments [D]. Xi’an: Xi’an Shiyou University, 2015
|
16 |
申毅. 波动应力对X80管线钢在近中性环境中SCC的影响 [D]. 西安: 西安石油大学, 2015
|
17 |
Liu Z Y, Li X G, Du C W, et al. Local additional potential model for effect of strain rate on SCC of pipeline steel in an acidic soil solution [J]. Corros. Sci., 2009, 51: 2863
|
18 |
Li Y, Pei Z B, Zaman B, et al. Effects of plastic deformations on the electrochemical and stress corrosion cracking behaviors of TC2 titanium alloy in simulated seawater [J]. Mater. Res. Express, 2018, 5: 116516
|
19 |
Zhao T L, Liu Z Y, Du C W, et al. Corrosion fatigue crack initiation and initial propagation mechanism of E690 steel in simulated seawater [J]. Mater. Sci. Eng., 2017, A708: 181
|
20 |
Chen T, Nutter J, Hawk J, et al. Corrosion fatigue crack growth behavior of oil-grade nickel-base alloy 718. Part 1: effect of corrosive environment [J]. Corros. Sci., 2014, 89: 146
|
21 |
Ning J, Zheng Y G, Brown B, et al. A thermodynamic model for the prediction of mild steel corrosion products in an aqueous hydrogen sulfide environment [J]. Corrosion, 2015, 71: 945
|
22 |
Zheng Y G, Ning J, Brown B, et al. Investigation of cathodic reaction mechanisms of H2S corrosion using a passive SS304 rotating cylinder electrode [J]. Corrosion, 2016, 72: 1519
|
23 |
Zheng Y G, Ning J, Brown B, et al. Electrochemical model of mild steel corrosion in a mixed H2S/CO2 aqueous environment in the absence of protective corrosion product layers [J]. Corrosion, 2015, 71: 316
|
24 |
Liu H X, Huang F, Yuan W, et al. Corrosion behavior of 690 MPa grade high strength Bainite steel in a simulated rural atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 416
|
24 |
刘海霞, 黄峰, 袁玮等. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2020, 40: 416
|
25 |
Sun F Y, Yang X, Lu Y, et al. Influence of SRB on microbiological corrosion of X100 pipeline steel in saline soil [J]. Pipeline Technol. Equip., 2018, (5): 42
|
25 |
孙福洋, 杨旭, 鲁元等. 盐渍性土壤中SRB对X100管线钢微生物腐蚀行为的影响 [J]. 管道技术与设备, 2018, (5): 42
|
26 |
Gao X, Shi W, Lu Q, et al. Corrosion characteristics of TC17 titanium alloy in HCl solution [J]. Gas Turb. Exp. Res., 2018, 31(6): 30
|
26 |
高兴, 石炜, 陆铨等. TC17钛合金在盐酸溶液中的腐蚀特性 [J]. 燃气涡轮试验与研究, 2018, 31(6): 30
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|