Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (2): 187-194    DOI: 10.11902/1005.4537.2020.022
  研究报告 本期目录 | 过刊浏览 |
交变载荷频率对MS X65管线钢在H2S介质中腐蚀电化学行为影响
戈方宇, 黄峰(), 袁玮, 肖虎, 刘静
武汉科技大学 省部共建耐火材料与冶金国家重点实验室 湖北省海洋工程材料及 服役安全工程技术研究中心 武汉 430081
Effect of Cyclic Stress Frequency on Corrosion Electrochem-ical Behavior of MS X65 Pipeline Steel in H2S Containing Medium
GE Fangyu, HUANG Feng(), YUAN Wei, XIAO Hu, LIU Jing
The State Key Laboratory of Refractories and Metallurgy, Hubei Engineering Technology Research Center of Marine Materials and Service Safety, Wuhan University of Science and Technology, Wuhan 430081, China
全文: PDF(6213 KB)   HTML
摘要: 

采用动电位极化、线性极化、电化学阻抗等电化学测试技术,研究了不同应力比 (R) 下MS X65管线钢在含H2S介质中的腐蚀电化学行为随交变载荷频率变化的规律。结果表明:自腐蚀电流密度Icorr、电荷转移电阻Rct、线性极化电阻Rp等腐蚀电化学动力学参数均随着交变载荷频率的增加,先上升或下降,后趋于稳定,存在一个临界交变频率;且由R=0.4时的0.25 Hz增大到R=0.85时的1 Hz,这与不同应力比和交变频率对电极表面电化学活性反应位点和腐蚀介质中阴极反应物扩散速率的交互影响有关。

关键词 MS X65管线钢交变载荷临界交变频率应力比    
Abstract

The electrochemical behavior of MS X65 pipeline steel in H2S containing medium by different stress ratios (R) was investigated via electrochemical test techniques such as dynamic potential polarization, linear polarization, and electrochemical impedance. The results indicated that electrochemical kinetic parameters such as free-corrosion current density Icorr, electron transfer resistance Rct, and linear polarization resistance Rp all increase or decrease first with the increase of the cyclic stress frequency, and then stabilized by a critical cyclic stress frequency. The critical frequency increased from 0.25 Hz for R=0.4 to 1 Hz for R=0.85, which would be related to the interactive influence of different stress ratios and cyclic stress frequencies on the electrochemically active reaction sites on the electrode surface and the diffusion rate of cathode reactants.

Key wordsMS X65 pipeline steel    cyclic stress    critical cyclic stress frequency    stress ratio
收稿日期: 2020-02-26     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51871172)
通讯作者: 黄峰     E-mail: huangfeng@wust.edu.cn
Corresponding author: HUANG Feng     E-mail: huangfeng@wust.edu.cn
作者简介: 戈方宇,男,1995年生,硕士生

引用本文:

戈方宇, 黄峰, 袁玮, 肖虎, 刘静. 交变载荷频率对MS X65管线钢在H2S介质中腐蚀电化学行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 187-194.
Fangyu GE, Feng HUANG, Wei YUAN, Hu XIAO, Jing LIU. Effect of Cyclic Stress Frequency on Corrosion Electrochem-ical Behavior of MS X65 Pipeline Steel in H2S Containing Medium. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 187-194.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.022      或      https://www.jcscp.org/CN/Y2021/V41/I2/187

图1  MS X65管线钢显微组织图
图2  MS X65管线钢的工程应力-应变曲线
图3  MS X65管线钢板状拉伸样尺寸交变载荷下电化学实验装置示意图
图4  不同应力比及频率下的开路电位
图5  不同应力比下开路电位随交变载荷频率变化折线图
图6  MS X65管线钢在不同应力比及频率下的极化曲线
Stress ratiofHzEcorr / V (vs SCE)IcorrA·cm-2Ic,dA·cm-2
0.40.05-0.7103.95×10-57.54×10-5
0.1-0.7064.09×10-58.50×10-5
0.25-0.6831.29×10-41.45×10-4
0.5-0.6781.22×10-41.39×10-4
1.0-0.6851.21×10-41.31×10-4
1.5-0.6811.24×10-41.46×10-4
0.850.05-0.7151.22×10-55.45×10-5
0.1-0.6631.85×10-41.92×10-4
0.25-0.6681.72×10-41.83×10-4
0.5-0.6572.47×10-42.56×10-4
1.0-0.6533.19×10-43.50×10-4
1.5-0.6523.01×10-43.53×10-4
表1  MS X65管线钢在不同应力比及频率下的极化曲线拟合结果
图7  MS X65管线钢在应力比0.4下的阻抗谱
图8  MS X65管线钢在应力比0.85下的阻抗谱
图9  拟合阻抗谱所用电路图
图10  不同应力比及频率下MS X65管线钢的阻抗值
图11  MS X65管线钢在不同应力比及频率下的线性极化曲线
图12  不同应力比下极化电阻随载荷频率的变化规律
1 Cheng A K, Chen N Z. An extended engineering critical assessment for corrosion fatigue of subsea pipeline steels [J]. Eng. Fail. Anal., 2018, 84: 262
2 Zhao X Y, Huang F, Gan L J, et al. Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of the welded MS X70 pipeline steel in H2S environment [J]. Acta Metall. Sin., 2017, 53: 1579
2 赵小宇, 黄峰, 甘丽君等. MS X70酸性环境用管线钢焊接接头氢致开裂敏感性及氢捕获效率研究 [J]. 金属学报, 2017, 53: 1579
3 Yuan W, Huang F, Gan L J, et al. Effect of microstructure on hydrogen induced cracking and hydrogen trapping behavior of X100 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 536
3 袁玮, 黄峰, 甘丽君等. 显微组织对X100管线钢氢致开裂及氢捕获行为影响 [J]. 中国腐蚀与防护学报, 2019, 39: 536
4 Zhou C S, Zheng S Q, Chen C F, et al. The effect of the partial pressure of H2S on the permeation of hydrogen in low carbon pipeline steel [J]. Corros. Sci., 2013, 67: 184
5 Mohtadi-Bonab M A, Ghesmati-Kucheki H. Important factors on the failure of pipeline steels with focus on hydrogen induced cracks and improvement of their resistance: review paper [J]. Met. Mater. Int., 2019, 25: 1109
6 Mohtadi-Bonab M A, Eskandari M, Szpunar J A. Role of cold rolled followed by annealing on improvement of hydrogen induced cracking resistance in pipeline steel [J]. Eng. Fail. Anal., 2018, 91: 172
7 Zhang Q C, Huang Y L, Blackwood D J, et al. On the long term estimation of hydrogen embrittlement risks of titanium for the fabrication of nuclear waste container in bentonite buffer of nuclear waste repository [J]. J. Nucl. Mater., 2020, 533: 152092
8 Kim S J, Jung H G, Kim K Y. Effect of tensile stress in elastic and plastic range on hydrogen permeation of high-strength steel in sour environment [J]. Electrochim. Acta, 2012, 78: 139
9 Mohtadi-Bonab M A, Eskandari M, Rahman K M M, et al. An extensive study of hydrogen-induced cracking susceptibility in an API X60 sour service pipeline steel [J]. Int. J. Hydrogen Energy, 2016, 41: 4185
10 Townsend H E Jr. Effects of stress on entry and permeation of hydrogen in iron [J]. Corrosion, 1970, 26: 361
11 Zhang T M, Zhao W M, Li T T, et al. Comparison of hydrogen embrittlement susceptibility of three cathodic protected subsea pipeline steels from a point of view of hydrogen permeation [J]. Corros. Sci., 2018, 131: 104
12 Wu W, Li Y, Ji L K, et al. Progress in research on fatigue behavior of pipeline steel [J]. Welded Pipe Tube, 2009, 32(8): 31
12 武威, 李洋, 吉玲康等. 管线钢疲劳行为研究进展 [J]. 焊管, 2009, 32(8): 31
13 Mohtadi-Bonab M A, Eskandari M. A focus on different factors affecting hydrogen induced cracking in oil and natural gas pipeline steel [J]. Eng. Fail. Anal., 2017, 79: 351
14 Zhong Y, Xiao F R, Shan Y Y, et al. Study of relationship between fatigue crack growth rate and fatigue life for pipeline steels [J]. Acta Metall. Sin., 2005, 41: 523
14 钟勇, 肖福仁, 单以银等. 管线钢疲劳裂纹扩展速率与疲劳寿命关系的研究 [J]. 金属学报, 2005, 41: 523
15 Hagiwara N, Méziere Y, Oguchi N, et al. Fatigue behavior of steel pipes containing idealized flaws under fluctuating pressure [J]. JSME Int. J., 1999, 42A: 610
16 Shen Y. The influence of the fluctuating stress to the SCC behavior of X80 pipeline steel in near neutral environments [D]. Xi’an: Xi’an Shiyou University, 2015
16 申毅. 波动应力对X80管线钢在近中性环境中SCC的影响 [D]. 西安: 西安石油大学, 2015
17 Liu Z Y, Li X G, Du C W, et al. Local additional potential model for effect of strain rate on SCC of pipeline steel in an acidic soil solution [J]. Corros. Sci., 2009, 51: 2863
18 Li Y, Pei Z B, Zaman B, et al. Effects of plastic deformations on the electrochemical and stress corrosion cracking behaviors of TC2 titanium alloy in simulated seawater [J]. Mater. Res. Express, 2018, 5: 116516
19 Zhao T L, Liu Z Y, Du C W, et al. Corrosion fatigue crack initiation and initial propagation mechanism of E690 steel in simulated seawater [J]. Mater. Sci. Eng., 2017, A708: 181
20 Chen T, Nutter J, Hawk J, et al. Corrosion fatigue crack growth behavior of oil-grade nickel-base alloy 718. Part 1: effect of corrosive environment [J]. Corros. Sci., 2014, 89: 146
21 Ning J, Zheng Y G, Brown B, et al. A thermodynamic model for the prediction of mild steel corrosion products in an aqueous hydrogen sulfide environment [J]. Corrosion, 2015, 71: 945
22 Zheng Y G, Ning J, Brown B, et al. Investigation of cathodic reaction mechanisms of H2S corrosion using a passive SS304 rotating cylinder electrode [J]. Corrosion, 2016, 72: 1519
23 Zheng Y G, Ning J, Brown B, et al. Electrochemical model of mild steel corrosion in a mixed H2S/CO2 aqueous environment in the absence of protective corrosion product layers [J]. Corrosion, 2015, 71: 316
24 Liu H X, Huang F, Yuan W, et al. Corrosion behavior of 690 MPa grade high strength Bainite steel in a simulated rural atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 416
24 刘海霞, 黄峰, 袁玮等. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2020, 40: 416
25 Sun F Y, Yang X, Lu Y, et al. Influence of SRB on microbiological corrosion of X100 pipeline steel in saline soil [J]. Pipeline Technol. Equip., 2018, (5): 42
25 孙福洋, 杨旭, 鲁元等. 盐渍性土壤中SRB对X100管线钢微生物腐蚀行为的影响 [J]. 管道技术与设备, 2018, (5): 42
26 Gao X, Shi W, Lu Q, et al. Corrosion characteristics of TC17 titanium alloy in HCl solution [J]. Gas Turb. Exp. Res., 2018, 31(6): 30
26 高兴, 石炜, 陆铨等. TC17钛合金在盐酸溶液中的腐蚀特性 [J]. 燃气涡轮试验与研究, 2018, 31(6): 30
[1] 蔡剑, 刘道新, 叶作彦, 张晓化, 何宇廷, 崔腾飞. 腐蚀与交变载荷循环作用对2A12-T4铝合金疲劳寿命的影响[J]. 中国腐蚀与防护学报, 2015, 35(1): 61-68.
[2] 王志英; 王俭秋; 韩恩厚; 柯; 伟 . 力学因素对管线钢应力腐蚀开裂裂纹萌生的影响[J]. 中国腐蚀与防护学报, 2008, 28(5): 282-286 .
[3] 路民旭;郑修麟. 应力比和频率对GC-4钢CF裂纹扩展特性的影响[J]. 中国腐蚀与防护学报, 1994, 14(2): 95-105.