Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (2): 177-184    DOI: 10.11902/1005.4537.2015.079
  本期目录 | 过刊浏览 |
节节草提取物在盐酸介质中对碳钢的缓蚀行为研究
陈文(),管春平,杨申明,胡小安
楚雄师范学院化学与生命科学系 楚雄 675000
Corrosion Inhibition of Equisetum Ramosissimum Extractive for Carbon Steel in Hydrochloric Acid Solution
Wen CHEN(),Chunping GUAN,Shenming YANG,Xiaoan HU
Department of Chemistry and Life Science, Chuxiong Normal University, Chuxiong 675000, China
全文: PDF(924 KB)   HTML
摘要: 

利用极化曲线、电化学阻抗谱研究了节节草提取物对Q235钢在盐酸溶液中的缓蚀性能。结果表明,采用热水浸提法得到的节节草提取物,可明显减缓Q235钢在1 molL-1 HCl溶液中的腐蚀,属阴极抑制为主的混合型缓蚀剂。提取物的缓蚀性能随浓度增大而增强,并在实验温度范围内较稳定。阻抗数据拟合结果表明,提取物中的缓蚀剂分子在Q235钢表面的吸附同时符合Langmuir 和Dhar-Flory-Huggins等温吸附方程。光谱分析和SEM观察分别证实了提取物在Q235钢表面的吸附及其对Q235钢在盐酸中的缓蚀作用。

关键词 Q235钢节节草极化曲线电化学阻抗谱    
Abstract

The inhibition effect of Equisetum ramosissimum extractive (ERE), extracted by hot water extraction method, on the corrosion of Q235 steel in 1 molL-1 HCl solution was investigated by means of polarization curves and electrochemical impedance spectroscopy (EIS). The results showed that ERE could effectively inhibited the steel corrosion, and acted as a mixed-type inhibitor with predominant control of the cathodic reaction. The inhibition efficiency increased with increasing dose of the extractive and was stable within the range of experimental temperature (20~50 ℃). By fitting the EIS data, it was found that the adsorption of ERE molecules on the steel surface obeyed both the Langmuir and the Dhar-Flory-Huggins adsorption isotherms. Spectroscopic analysis and scanning electron microscope observation confirmed existence of a adsorbed film of ERE on the steel surface.

Key wordsQ235 steel    equisetum ramosissimum    polarization curve    electrochemical impedance spectroscopy
    
基金资助:国家自然科学基金项目 (51361001)和楚雄师范学院学术骨干培养项目 (12YJGG02) 资助

引用本文:

陈文,管春平,杨申明,胡小安. 节节草提取物在盐酸介质中对碳钢的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(2): 177-184.
Wen CHEN, Chunping GUAN, Shenming YANG, Xiaoan HU. Corrosion Inhibition of Equisetum Ramosissimum Extractive for Carbon Steel in Hydrochloric Acid Solution. Journal of Chinese Society for Corrosion and protection, 2016, 36(2): 177-184.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.079      或      https://www.jcscp.org/CN/Y2016/V36/I2/177

图1  不同温度下Q235钢在含不同浓度ERE的1 molL-1盐酸中的极化曲线
Temperature / ℃ c / mgL-1 Ecorr / mV ba / mVdec-1 bc / mVdec-1 Icorr / μAcm-2 IE / %
20 Blank -432 97.9 124.8 1265
30 -457 68.3 101.7 241 81.0
60 -453 69.5 105.7 203 84.0
150 -449 74.6 109.8 174 86.2
300 -467 73.8 120.0 138 89.1
600 -464 74.4 136.0 128 89.9
30 Blank -439 103.2 135.7 2369 ---
30 -450 72.4 94.4 350 85.2
60 -455 74.6 100.1 327 86.2
150 -471 72.6 100.9 178 92.5
300 -475 74.2 104.3 156 93.4
600 -492 83.2 107.6 150 93.7
40 Blank -423 102.5 139.9 5772 ---
30 -429 82.9 141.2 188 67.3
60 -438 66.4 112.5 653 88.7
150 -450 68.2 109.9 378 93.4
300 -465 69.7 105.7 339 94.1
600 -470 74.7 107.3 281 95.1
50 Blank -398 101.3 131.2 6335 ---
30 -411 82.1 129.5 3005 52.6
60 -430 89.3 131.2 1818 71.3
150 -441 69.5 116.2 997 84.3
300 -448 78.3 118.8 854 86.5
600 -448 85.7 118.4 779 87.7
表1  不同温度下Q235钢在含不同浓度ERE的 1 molL-1盐酸中的极化曲线拟合参数
图2  不同温度下Q235钢在含不同浓度ERE的1 molL-1盐酸中的Nyquist图
图3  Q235钢在空白和添加ERE体系的1 molL-1盐酸溶液中的等效电路图
Temperature / ℃ c / mgL-1 Cdl / μFcm-2 Rct / Ωcm2 Cf / mFcm-2 Rf / Ωcm2 IE / %
20 Blank 257 22.7 --- --- ---
30 117 117.4 18.9 15.6 82.9
60 102 143.9 13.9 29.2 86.8
150 86 175.6 25.2 56.3 90.2
300 66 249.6 8.6 72.9 92.9
600 61 283.2 5.8 101.4 94.1
30 Blank 334 14.8 --- --- ---
30 175 40.8 10.9 17.2 74.5
60 112 78.3 37.2 10.5 83.3
150 64 144.5 17.0 22.2 91.1
300 52 162.7 23.3 38.1 92.6
600 44 187.6 11.0 53.6 93.9
40 Blank 574 8.3 --- --- ---
30 201 24.73 15.6 2.2 69.1
60 132 49.4 22.9 4.7 84.6
150 76 67.9 13.7 9.9 89.3
300 52 83.8 10.2 16.9 91.7
600 47 92.9 2.3 22.6 92.8
50 Blank 761 4.6 --- --- ---
30 375 9.0 20.9 1.4 55.7
60 161 20.9 22.3 1.9 79.8
150 109 27.4 12.8 4.9 85.7
300 77 36.2 10.7 8.6 89.7
600 68 42.9 19.4 12.0 91.6
表2  不同温度下Q235钢在含不同浓度缓蚀剂的1 molL-1盐酸中的阻抗图谱拟合结果
图4  Langmuir和Dhar-Flory-Huggins吸附等温线
Temperature / ℃ Adsorption isotherm model R2 Kads / Lmg-1 x ΔGadsθ / kJmol-1
20 Langmiur 0.999 0.162 --- -29.2
Dhar-Flory-Huggins 0.983 1.077 3.01 -33.8
30 Langmiur 0.999 0.119 --- -29.4
Dhar-Flory-Huggins 0.982 2.367 3.53 -37.0
40 Langmiur 0.999 0.111 --- -30.2
Dhar-Flory-Huggins 0.973 2.151 3.79 -37.9
50 Langmiur 0.999 0.063 --- -29.7
Dhar-Flory-Huggins 0.985 0.250 2.74 -33.4
表3  Langmiur和Dhar-Flory-Huggins吸附模型的拟合参数
图5  ERE吸附膜层的红外谱图
图6  含150 gL-1ERE的HCl空白溶液以及Q235钢试样浸泡24 h后的紫外光谱
图7  Q235钢试片在盐酸中浸泡8 h后的表面SEM像
[1] He X K, Chen B Z, Zhang Q F.Present development and prospect of inhibitor[J]. Mater. Prot., 2003, 36(8): 1
[1] (何新快, 陈白珍, 张钦发. 缓蚀剂的研究现状与展望[J]. 材料保护, 2003, 36(8): 1)
[2] Issaadi S, Douadi T, Zouaoui A, et al.Novel thiophene symmetrical Schiff base compounds as corrosion inhibitor for mild steel in acidic media[J]. Corros. Sci., 2011, 53(4): 1484
[3] Li X X, Yang W Z.Inhibition of 1-propyl-2-methyl-3-alkyl benzimidazole on Q235 steel in HCl solution[J]. J. Chin. Soc. Corros. Prot., 2012, 32(2): 168
[3] (李相旭, 杨文忠. 盐酸介质中1-丙基-2-甲基-3-烷基苯并咪唑盐对Q235钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2012, 32(2): 168)
[4] Lebrini M, Traisnel M, Lagrenée M, et al.Inhibitive properties, adsorption and a theoretical study of 3,5-bis(n-pyridyl)-4-amino-1,2,4-triazoles as corrosion inhibitors for mild steel in perchloric acid[J]. Corros. Sci., 2008, 50(2): 473
[5] Abdel-Gaber M, Ab-El-Nabey B A, Sidahmed I M, et al. Inhibitive action of some plant extracts on the corrosion of steel in acidic media[J]. Corros. Sci., 2006, 48(9): 2765
[6] Chauhan L R, Gunasekaran G.Corrosion inhibition of mild steel by plant extracts in dilute HCl[J]. Corros. Sci., 2007, 49(3): 1143
[7] Zheng X W, Gong M, Zeng X G, et al.Inhibition of extractives from chinnamomum camphor leaves on carbon steel in H2SO4 solution[J]. Corros. Sci. Prot. Technol., 2012, 24(1): 42
[7] (郑兴文, 龚敏, 曾宪光等. 樟树叶提取液在硫酸介质中对碳钢的缓蚀作用[J]. 腐蚀科学与防护技术, 2012, 24(1): 42)
[8] Emeka E O, Demian I N, Maduabuchi A C, et al.Characterization and experimental and computational assessment of kola nitida extract for corrosion inhibiting efficacy[J]. Ind. Eng. Chem. Res., 2014, 53(14): 5886
[9] Neda M-D, Natasa S, Jelena C, et al.Phenolic compounds in field horsetail (Equisetum arvense L.) as natural antioxidants[J]. Molecules, 2008, 13(7): 1455
[10] Yu H W, Yan M M, Yang Z, et al.Chemical constituents of Equisetum ramosissimum[J]. Chin. Trad. Herbal Drugs, 2011, 42(3): 450
[10] (于红威, 严铭铭, 杨智等. 节节草化学成分的研究[J]. 中草药, 2011, 42(3): 450)
[11] Bayola E, Kayakırılmaz K, Erbil M.The inhibitive effect of hexamethylenetetramine on the acid corrosion of steel[J]. Mater. Chem. Phys., 2007, 104(1): 74
[12] Wang J, Cao C N, Chen J J, et al.Anodic desorption of inhibitors 1. the phenomenon of anodic desorption of inhibitors[J]. J. Chin. Soc. Corros. Prot., 1995, 15(4): 241
[12] (王佳, 曹楚南, 陈家坚等. 缓蚀剂阳极脱附现象的研究I.缓蚀剂阳极脱附现象[J]. 中国腐蚀与防护学报, 1995, 15(4): 241)
[13] Saleh M M, Atia A A.Effects of structure of the ionic head of cationic surfactant on its inhibition of acid corrosion of mild steel[J]. Appl. Electrochem., 2006, 36(8): 899
[14] Solmaz R, Kardas G, Yazici B, et al. Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-l,3,4-thiadiazole on mild steel in hydrochloric acid media [J]. Colloid. Surf., 2008, 312(1)A: 7
[15] Lebrini M, Lagrenée M, Vezin H, et al.Experimental and theoretical study for corrosion inhibition of mild steel in normal hydrochloric acid solution by some new macrocyclic polyether compounds[J]. Corros. Sci., 2007, 49(5): 2254
[16] Abelev E, Starosvetsky D, Ein-Eli Y.Enhanced copper surface protection in aqueous solutions containing short-chain alkanoic acid potassium salts[J]. Langmuir, 2007, 23(22): 11281
[17] Popova A, Raicheva S, Sokolova E, et al.Frequency dispersion of the interfacial impedance at mild steel corrosion in acid media in the presence of benzimidazole derivatives[J]. Langmuir, 1996, 12(8): 2083
[18] Lorenz W J, Mansfeld F.Determination of corrosion rates by electrochemical DC and AC methods[J]. Corros. Sci., 1981, 21(9/10): 647
[19] Umoren S A, Gasem Z M, Obot I B.Natural products for material protection: Inhibition of mild steel corrosion by date palm seed extracts in acidic media[J]. Ind. Eng. Chem. Res., 2013, 52(42): 14855
[20] Hamdy H H.Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives Part II: Time and temperature effects and thermodynamic treatments[J]. Electrochim. Acta, 2007, 53(4): 1722
[21] Solmaz R, S?ahin E A, Do?ner A, et al. The investigation of synergistic inhibition effect of rhodanine and iodide ion on the corrosion of copper in sulphuric acid solution[J]. Corros. Sci., 2011, 53(10): 3231
[22] Dhar H P, Conway B E, Joshi K M.On the form of adsorption isotherms for substitutional adsorption of molecules of different sizes[J]. Electrochim. Acta, 1973, 18(11): 789
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 李子运, 王贵, 罗思维, 邓培昌, 胡杰珍, 邓俊豪, 徐敬明. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[3] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[5] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[6] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[7] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[8] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[9] 焦明远, 金伟良, 毛江鸿, 李腾, 夏晋. 电化学修复过程混凝土内环境对钢筋表面析氢影响的实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[10] 宋增意, 刘莉, 邓丽, 孙元, 周亦胄. N5镍基单晶高温合金在王水中的电化学溶解行为研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[11] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[12] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[13] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[14] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[15] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.