Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (3): 245-250    DOI: 10.11902/1005.4537.2015.038
  研究报告 本期目录 | 过刊浏览 |
ZK60镁合金在卤化钠溶液中的腐蚀行为研究
徐宏妍(),第五江涛,刘霞,杨亚琴
Corrosion Behavior of ZK60 Magnesium Alloy in Sodium Halide Solutions
Hongyan XU(),Jiangtao DIWU,Xia LIU,Yaqin YANG
School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
全文: PDF(2508 KB)   HTML
摘要: 

通过动电位极化曲线和静态失重法研究了ZK60镁合金在3.5%卤化钠NaX (X =F,Cl,Br和I) 溶液中的腐蚀行为,并且利用SEM观察了ZK60镁合金的腐蚀形貌。结果表明:ZK60镁合金在3.5%NaX溶液中的开路电位先上升然后逐渐趋于平缓,最后达到一个较稳定的值。ZK60镁合金的电化学行为与溶液中卤素离子的种类有关,在3.5%NaF溶液中处于钝化状态,而在3.5%NaCl,3.5%NaBr和3.5%NaI溶液中则处于腐蚀状态且腐蚀速率随浸泡时间的延长而减小,其主要原因是溶液pH值的升高和腐蚀产物所起的保护作用。

关键词 ZK60镁合金腐蚀卤化钠溶液    
Abstract

The corrosion behavior of ZK60 magnesium alloy in 3.5% sodium halides NaX (X =F, Cl, Br and I) solutions was studied by means of static immersion methods, potentiodynamic polarization measurement and SEM observation. The results showed that, the open circuit potential (OCP) of ZK60 alloy in 3.5% sodium halides solutions increased first and then became flat to a steady state. The corrosion behavior of ZK60 alloy was related to the halogen ions in the solutions: i.e. it was passivated in 3.5%NaF solution, while it was corroded in 3.5%NaCl, 3.5%NaBr and 3.5%NaI solutions and its corrosion rate decreased with immersion time, which may be ascribed to the formed protective corrosion products with the increasing pH value of the solutions.

Key wordsZK60 magnesium alloy    corrosion    sodium halide solution
    
基金资助:山西省青年科技研究基金项目 (2011021020-2),山西省人社厅留学回国人员科技活动择优项目和山西省自然科学基金项目 (2012011022-2) 资助

引用本文:

徐宏妍,第五江涛,刘霞,杨亚琴. ZK60镁合金在卤化钠溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 245-250.
Hongyan XU, Jiangtao DIWU, Xia LIU, Yaqin YANG. Corrosion Behavior of ZK60 Magnesium Alloy in Sodium Halide Solutions. Journal of Chinese Society for Corrosion and protection, 2015, 35(3): 245-250.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.038      或      https://www.jcscp.org/CN/Y2015/V35/I3/245

图1  ZK60 镁合金在3.5%Na X( X=F, Cl, Br 和I) 溶液中的开路电位随时间的变化曲线
图2  在3.5%NaF溶液中浸泡10, 30, 60和120 min后的ZK60镁合金表面XRD谱及放大图
图3  ZK60 镁合金在3.5%Na X( X=F,Cl,Br 和I) 溶液中的动电位极化曲线
Solution Ecorr / mVSCE Icorr / mAcm-2
10 min 60 min 10 min 60 min
3.5%NaCl -1473 -1459 0.112 0.058
3.5%NaBr -1450 -1397 0.073 0.018
3.5%NaI -1414 -1352 0.058 0.017
3.5%NaF -417 -185 0.009 0.006
表1  ZK60镁合金在不同卤化钠溶液中浸泡不同时间下的腐蚀电位 (Ecorr) 和腐蚀电流密度 (Icorr)
图4  卤化钠溶液的pH值随ZK60镁合金浸泡时间的变化曲线
图5  ZK60镁合金在3.5%Na X(X=F, Cl, Br和I) 溶液中浸泡48 h 后的腐蚀形貌
[1] Shi Z, Jia J X, Atrens A. Galvanostatic anodic polarisation curves and galvanic corrosion of high purity Mg in 3.5%NaCl saturated with Mg(OH)2[J]. Corros. Sci., 2012, 60: 296
[2] Cheng Y L, Qin T W, Wang H M, et al. Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys[J]. Trans. Nonferrous Met. Soc. China, 2009, 19(3): 517
[3] Zhang Z M, Xu H Y, Li B C. Corrosion properties of plastically deformed AZ80 magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: s697
[4] Zhao M C, Liu M, Song G L, et al. Influence of pH and chloride ion concentration on corrosion of magnesium alloy ZE41[J]. Corros. Sci., 2008, 50: 3168
[5] Xu W J, Ma Y, Lv W L, et al. Effect factors of corrosion behaviors of magnesium alloys[J]. Corros. Prot., 2007, 28(4): 163
[6] Yang L J, Wei Y H, Hou L F, et al. Corrosion behaviour of die-cast AZ91D magnesium alloy in aqueous sulphate solutions[J]. Corros. Sci., 2010, 52(2): 345
[7] Bakhsheshi-Rad H R, Idris M H, Abdul-Kadir M R. Synthesis and in vitro degradation evaluation of the nano-HA/MgF2 and DCPD/MgF2 composite coating on biodegradable Mg-Ca-Zn alloy[J]. Surf. Coat. Technol., 2013, 222: 79
[8] Ambat R, Aung N N, Zhou W. Studies on the influence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91D magnesium alloy[J]. J. Appl. Electrochem., 2000, 30(7): 865
[9] Fekry A M, Tammam R H. Corrosion and impedance studies on magnesium alloy in oxalate solution[J]. Mater. Sci. Eng., 2011, B176: 792
[10] Heakal F E, Fekry A M, Fatayerji M. Influence of halides on the dissolution and passivation behavior of AZ91Dmagnesium alloy in aqueous solutions[J]. Electrochim. Acta, 2009, 54: 1545
[11] Pan F S, Mao J S, Chen X H, et al. Influence of impurities on microstructure and mechanical properties of ZK60 magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1299
[12] Wu Y Z,?Yan H G,?Zhu S Q,?et al. Microstructure and mechanical properties of?ZK60?magnesium alloy fabricated by high strain rate multiple forging[J]. Mater. Sci. Technol., 2013, 29(1): 54
[13] Zhang X, Zhang K, Li X G, et al. Corrosion and electrochemical behavior of as-cast Mg-5Y-7Gd-1Nd-0.5 Zr magnesium alloys in 5%NaCl aqueous solution[J]. Prog. Nat. Sci.: Mater. Int., 2011, 21(4): 314
[14] Gulbrandsen E, Taft? J, Olsen A. The passive behaviour of Mg in alkaline fluoride solutions. Electrochemical and electron microscopical investigations[J]. Corros. Sci., 1993, 34(9): 1423
[15] Li J Z, Huang J G, Tian Y W, et al. Corrosion action and passivation mechanism of magnesium alloy in fluoride solution[J]. Trans. Nonferrous Met . Soc. China, 2009, 19(1): 50
[16] Huo H W, Li Y, Wang H N, et al. Corrosion and protection of magnesium alloys[J]. Mater. Rev., 2001, 15(7): 25 (霍宏伟, 李瑛, 王赫男等. 镁合金的腐蚀与防护[J]. 材料导报, 2001, 15(7): 25)
[17] Hara N, Kobayashi Y, Kagaya D, et al. Formation and breakdown of surface films on magnesium and its alloys in aqueous solutions[J]. Corros. Sci., 2007, 49(1): 166
[18] Pardo A, Merino M C, Coy A E, et al. Corrosion behavior of magnesium/aluminum alloys in 3.5wt.% NaCl[J]. Corros. Sci., 2008, 50(3): 823
[19] Li Y, Zhang Z M, Xue Y. Influence of aging on microstructure and mechanical properties of AZ80 and ZK60 magnesium alloys[J]. Trans. Nonferrous Met. Soc. China, 2011, 21(4): 739
[20] Chen X H, Huang X W, Pan F S, et al. Effects of heat treatment on microstructure and mechanical properties of ZK60 Mg alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21(4): 754
[21] Orlov D,Ralston K D,Birbilis N,et al. Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing [J]. Acta Mater.., 2011, 59(15): 6176
[1] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[3] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[4] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[5] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[6] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[7] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[8] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[9] 姜伯晨, 曹将栋, 曹雪玉, 王建涛, 张少朋. Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[10] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[11] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[12] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[14] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[15] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.