Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (1): 67-72    DOI: 10.11902/1005.4537.2015.025
  本期目录 | 过刊浏览 |
WBE技术研究水线区破损涂层的剥离机制
陈亚林1,2,张伟1,2,丁葵英3,王佳4,5(),尹鹏飞1,2,董彩常1,2,杨万国1,2
1. 钢铁研究总院青岛海洋腐蚀研究所 青岛 266071
2. 青岛钢研纳克检测防护技术有限公司 青岛 266071
3. 潍坊出入境检验检疫局 潍坊 261041
4. 中国海洋大学化学化工学院 青岛 266100
5. 中国科学院金属研究所 沈阳 110016
Debonding Mechanism of Organic Coating with Man-made Defect in the Area nearby Water-line by WBE Technique
Yalin CHEN1,2,Wei ZHANG1,2,Kuiying DING3,Jia WANG4,5(),Pengfei YIN1,2,Caichang DONG1,2,Wanguo YANG1,2
1. Qingdao Institute of Marine Corrosion, Central Iron & Steel Research Institute, Qingdao 266071, China
2. NCS Testing Technology Co., Ltd., Qingdao 266071, China
3. Technical Center of Weifang Entry-Exit Inspection and Quarantine Bureau, Weifang 261041, China
4. College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
5.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(2416 KB)   HTML
摘要: 

应用阵列电极 (WBE) 和电化学阻抗谱 (EIS) 技术,研究了破损涂层在3.5% (质量分数) NaCl溶液中的电流分布及阻抗谱,并根据电流分布和涂层阻抗变化探究了破损涂层在水线区的剥离机制.结果表明:人为破损和涂层固有缺陷均对其附近涂层有加速阴极剥离的作用.浸泡初期,缺陷处涂层最先剥离,此后,涂层剥离主要在破损处和缺陷处附近优先发展.并且在水线作用下,缺陷处附近的涂层剥离向水线方向发展.水线上涂层较水线下剥离较晚,其剥离速率主要受水在涂层中的渗透速率控制.

关键词 阵列电极水线区涂层剥离电流分布阻抗谱    
Abstract

The debonding process of organic coatings with desired artificial defects in 3.5%NaCl solution was studied by means of wire beam electrode (WBE) method and electrochemical impedance spectroscopy (EIS) technique. The purpose was to reveal the relevant debonding mechanism of organic coatings in the area nearby water-line via analyzing the current distribution and the variation of impedance spectroscopy during the experiment. It was found that, either the artificial defect or inherent defect could accelerate cathodic debonding rate of the coating around the defects. Besides, due to the effect of waterline, a coating debonding, which initiated from one inherent defect will expand towards the waterline. The coating debonding occurred firstly on the area below the waterline, and then later above the waterline. The coating debonding rate on the area above waterline was controlled by the permeation rate of electrolyte through the coating.

Key wordswire beam electrode    water-line area    coating stripping    current distribution    electrochemical impedance spectroscopy
    
基金资助:国家自然科学基金项目 (21203034) 资助

引用本文:

陈亚林,张伟,丁葵英,王佳,尹鹏飞,董彩常,杨万国. WBE技术研究水线区破损涂层的剥离机制[J]. 中国腐蚀与防护学报, 2016, 36(1): 67-72.
Yalin CHEN, Wei ZHANG, Kuiying DING, Jia WANG, Pengfei YIN, Caichang DONG, Wanguo YANG. Debonding Mechanism of Organic Coating with Man-made Defect in the Area nearby Water-line by WBE Technique. Journal of Chinese Society for Corrosion and protection, 2016, 36(1): 67-72.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.025      或      https://www.jcscp.org/CN/Y2016/V36/I1/67

图1  阵列电极表面照片
图2  不同浸泡时间的阵列电极表面电流密度分布图
图3  浸泡不同时间阵列电极表面的形貌
图4  7-6#和10-7#丝的Bode图,7-6#丝的Nyquist图及拟合数据及7-6#丝的等效电路
图5  浸泡35 d后10-7#丝与7-4#丝的Bode图
图6  浸泡67 d后10-7#丝的Nyquist图和Bode图
图7  电极表面阳极电流密度随时间的变化曲线
[1] Evans U R.Report on corrosion research work at Cambridge University interrupted by the outbreak of war[J]. J. Iron Steel Inst.,1940, 141: 219
[2] Evans U R.Translated by Hua B D. The Corrosion and Oxidation of Metals [M]. Beijing: China Machine Press, 1976: 70
[2] (Erans U R著. 华宝定译. 金属腐蚀与氧化 [M]. 北京: 机械工业出版社, 1976: 70)
[3] Tomashov N D.The Theory of Corrosion and Protection of Metals[M]. New York: MacMillan, 1966: 469
[4] Jeffrey R, Melchers R E.Corrosion of vertical mild steel strips in seawater[J]. Corros. Sci., 2009, 51(10): 2291
[5] Tan Y, Bailey S, Kinsella B.Mapping non-uniform corrosion using the wire beam electrode method. III. Water-line corrosion[J]. Corros. Sci., 2001, 43(10): 1931
[6] Chen Y L, Zhang W, Wang J, et al.Evaluation of metal corrosion in the water-line area by WBE technique[J]. J. Chin. Soc. Corros. Prot., 2014, 34(5): 451
[6] (陈亚林, 张伟, 王佳等. WBE技术研究水线区金属腐蚀[J]. 中国腐蚀与防护学报, 2014, 34(5): 451)
[7] Zhang W, Wang J, Li Y N, et al.Evaluation of metal corrosion under defective coatings by WBE and EIS technique[J]. Acta Phys.-Chim. Sin., 2010, 26(11): 2941
[7] (张伟, 王佳, 李玉楠等. WBE联合EIS技术研究缺陷涂层下金属腐蚀[J]. 物理化学学报, 2010, 26(11): 2941)
[8] Wang W, Zhang X, Wang J.The influence of local glucose oxidase activity on the potentialrrent distribution on mild steel: A study by the wire beam electrode method[J]. Electrochim. Acta, 2009, 54: 5598
[9] Zhang X, Wang J, Wang W.A novel device for the wire beam electrode method and its application in the ennoblement study[J]. Corros. Sci., 2009, 51(6): 1475
[10] Kong D, Wang Y, Zhang W, et al.Correlation between electrochemical impedance and current distribution of carbon steel under organic coating[J]. Mater. Corros., 2012, 63: 475
[11] Li Y N.The research of the cathodic protection effect on broken organic coating [D]. Qingdao: Ocean University of China, 2011
[11] (李玉楠. 阴极保护对破损有机涂层防护作用的研究 [D]. 青岛: 中国海洋大学, 2011)
[12] Wang D.Study on eeffct of inhibitors on loealized corrosion of metal using the wire-beam electrode [D]. Changsha: Hunan University, 2005
[12] (王丹. 用丝束电极研究缓蚀剂对金属局部腐蚀的影响 [D]. 长沙: 湖南大学, 2005)
[13] Wang F P, Kang W L, Jing H M. Corrosion Electrochemical Principle, Method and Application [M]. Beijing: Chemical Industry Press, 2008: 132
[13] (王凤平, 康万利, 敬和民. 腐蚀电化学原理,方法及应用 [M]. 北京: 化学工业出版社, 2008: 132)
[14] Cao C N.Corrosion Electrochemical Principle [M]. 3rd Ed., Beijing: Chemical Industry Press, 2008: 229
[14] (曹楚南. 腐蚀电化学原理 [M]. 第三版. 北京: 化学工业出版社, 2008: 229)
[15] Zhang B H, Cong W B, Yang P.Metal Electrochemical Corrosion and Protection [M]. Beijing: Chemical Industry Press, 2005: 115
[15] (张宝宏, 丛文博, 杨萍. 金属电化学腐蚀与防护 [M]. 北京: 化学工业出版社, 2005: 115)
[1] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[2] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[3] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[4] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[5] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[6] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[7] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[8] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[9] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[10] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[11] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[12] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[13] 王佳, 贾梦洋, 杨朝晖, 韩冰. 腐蚀电化学阻抗谱等效电路解析完备性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[14] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[15] 陈亚林, 张伟, 王琦, 王佳. WBE技术研究水线区破损涂层的剥离机制-II[J]. 中国腐蚀与防护学报, 2017, 37(4): 322-328.