Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (6): 479-486    DOI: 10.11902/1005.4537.2016.107
  本期目录 | 过刊浏览 |
腐蚀电化学阻抗谱等效电路解析完备性研究
王佳1(), 贾梦洋1, 杨朝晖2, 韩冰2
1 中国海洋大学化学化工学院 青岛 266100
2 钢铁研究总院青岛海洋腐蚀研究所 青岛 266071
On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process
Jia WANG1(), Mengyang JIA1, Zhaohui YANG2, Bing HAN2
1 College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
2 Qingdao Institute of Marine Corrosion, Central Iron & Steel Research Institute, Qingdao 266071, China;
全文: PDF(1180 KB)   HTML
摘要: 

随着使用电化学阻抗谱方法研究腐蚀过程的工作日益增多,腐蚀电化学阻抗谱解析技术逐渐成为腐蚀科学家需要掌握的重要研究工具之一。近年来,电化学阻抗谱方法研究的腐蚀体系越来越复杂,不仅腐蚀环境和金属状态复杂化,且形成于金属表面界面膜层的种类也越来越多,导致简单电化学体系的阻抗谱等效电路解析方法越来越难以满足复杂腐蚀体系解析建模的要求。与动力学解析方法相比,模拟等效电路的解析方法因其简单直观而易于理解,应用范围日益扩展。但其固有的解析过程不严谨、不规范等不足,导致腐蚀过程等效电路模型缺陷增加和学术价值下降。为此,在多年研究腐蚀电化学阻抗谱等效电路解析方法的基础上,本文分析了电化学阻抗谱等效电路解析方法在腐蚀研究中的应用现状,探讨了等效电路方法解析腐蚀过程的优点和不足,以及提高这一解析方法学术价值的必要性和可行途径,以期建立严谨规范的腐蚀电化学阻抗谱等效电路模型解析路线,以适应复杂腐蚀过程的模型化研究需求,为腐蚀科学工作者提供一种高效实用的腐蚀电化学阻抗谱解析工具。

关键词 腐蚀过程电化学阻抗谱等效电路模型判据    
Abstract

With the increasing utilization of electrochemical impedance spectroscopy (EIS) in the field of corrosion research, the EIS analysis gradually become a great and important means for corrosion scientists. Especially in recent years, the corrosion processes involved in EIS studies become more and more complicated, not only for the diversity of corrosion environments and metallic materials, but also superficial- and/or interfacial-membranes on metal surface, thus such complex systems may bring too much difficulties for dealing with the relevant items, therewith the requirements for the normal and simple EIS analysis may not be satisfied any more. Comparing with electrochemical kinetics, the EIS analysis with the simulated equivalent circuit (SEQC) is fast propagating recently, because it is more simple, intuitive and accepted for the corrosion scientists, especially the ones of non-professional electrochemists. However, there exists inherent deficiency, shortages in preciseness and normalization for that technique, which may result in lower credibility of the relevant model of SEQCs. Therefore, the practical and reliable means in analysis of EIS should be created for the corrosion scientists with inadequate experience in electrochemistry, hence, the issues related with EIS analysis of corrosion processes were examined by the authors based on their experience in the field: i.e. the review of the present situation and the advantages and disadvantages of the application of the EQCS in EIS analysis of corrosion processes, and the discussion on the necessity and feasibility to enhance the credibility of SEQC in corrosion EIS analysis so that to establish tentatively routs for precise and normalized analysis of corrosion EIS by means of SEQCs.

Key wordscorrosion process    electrochemical impedance spectroscopy (EIS)    simulating equivalent circuit (SEQC)    model    criterion
收稿日期: 2016-07-25     
ZTFLH:  TG174  
基金资助:国家自然科学基金重点项目 (51131005) 和国家材料环境腐蚀平台 (2015)
作者简介: 作者简介 王佳,男,1948年生,教授

引用本文:

王佳, 贾梦洋, 杨朝晖, 韩冰. 腐蚀电化学阻抗谱等效电路解析完备性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 479-486.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.107      或      https://www.jcscp.org/CN/Y2017/V37/I6/479

图1  碳钢点蚀诱导期电化学阻抗谱响应[5]
图2  腐蚀电化学过程 (ECP) -电化学阻抗谱 (EIS)-等效电路 (EQC) 的关系
图3  串/并联电路等效变换[5]
[1] Delahay P.New Instrumental Methods in Electrochemistry[M]. Huntington: Interscience, 1954
[2] Sluyters-Rehbach M, Sluyters J H.Electroanalytical Chemistry[M]. New York: Marcel Dekker Inc., 1970: 1281
[3] Epelboin I, Gabrielli C, Keddam M, et al.A model of the anodic behaviour of iron in sulphuric acid medium[J]. Electrochim. Acta, 1975, 20: 913
[4] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[5] Cao C N, Wang J, Lin H C.Effect of Cl- ion on the impedance of passive-film-covered electrodes[J]. J. Chin. Soc. Corros. Prot., 1989, 9: 261(曹楚南, 王佳, 林海潮. 氯离子对钝态金属电极阻抗频谱的影响[J]. 中国腐蚀与防护学报, 1989, 9: 261)
[6] Shi M L.AC Impedance Spectroscopy Principles and Applications [M]. Beijing: National Defence Industrial Press, 2001: 30(史美伦. 交流阻抗谱原理及应用 [M]. 北京: 国防工业出版社, 2001: 30)
[7] Orazem M E, Tribollet B.Electrochemical Impedance Spectroscopy[M]. Hoboken, New Jersey: John Wiley & Sons Inc., 2008: 70
[8] Cai G X, Guo J W, Wang J, et al.Negative resistance for methanol electro-oxidation on platinum/carbon (Pt/C) catalyst investigated by an electrochemical impedance spectroscopy[J]. J. Power Sources, 2015, 276: 279
[9] Hermas A A, Morad M S.A comparative study on the corrosion behaviour of 304 austenitic stainless steel in sulfamic and sulfuric acid solutions[J]. Corros. Sci., 2008, 50: 2710
[10] Cheng Q L, Song S H, Song L Y, et al.Effect of relative humidity on the initial atmospheric corrosion behavior of zinc during drying[J]. J. Electrochem. Soc., 2013, 160C: 380
[1] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[2] 冯亚丽,白子恒,陈利红,魏丹,张东玖,姚琼,吴俊升,董超芳,肖葵. Corten-A耐候钢在模拟污染海洋大气环境中的加速腐蚀相关性研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 519-526.
[3] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[4] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[5] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[6] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[7] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[8] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[9] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[10] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[11] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[12] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[13] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[14] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[15] 冯立, 张立功, 李思振, 郑大江, 林昌健, 董士刚. 柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.