Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (6): 510-518    DOI: 10.11902/1005.4537.2014.273
  研究报告 本期目录 | 过刊浏览 |
接地网用导电防腐蚀涂层研究
刘世念1,王成2(),邓纪伦3,李锡3,朱圣龙2,王福会2
1. 广东电网有限责任公司电力科学研究院 广州 510080
2. 中国科学院金属研究所 沈阳 110016
3. 广东电网有限责任公司东莞供电局 东莞 523008
Epoxy Based Conductive Anti-corrosion Coatings for Grounding Grid
Shinian LIU1,Cheng WANG2(),Jilun DENG3,Xi LI3,Shenglong ZHU2,Fuhui WANG2
1. Electric Power Research Institute of Guangdong Power Grid Co. Ltd., Guangzhou 510080, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. Dongguan Power Supply Bureau of Guangdong Power Grid Co. Ltd., Dongguan 523008, China
全文: PDF(1352 KB)   HTML
摘要: 

采用物理混合的方法在接地网用Q235碳钢表面制备环氧树脂基导电防腐蚀涂层,研究了颜基比 (PBR) 对涂层性能的影响,确定了最佳颜基比。通过电化学阻抗技术测试了以最佳PBR制备的导电防腐蚀涂层对Q235碳钢在土壤中的防护行为,采用SEM技术分析了涂层的微观结构,并测试了涂层的电气性能。结果表明,Q235碳钢在土壤中发生严重腐蚀,E44环氧树脂清漆涂层防护作用有限,而导电防腐蚀涂层对Q235碳钢在土壤中具有优异的防护性能。涂层的体积电阻率和表面接触电阻分别为0.65 Ω·cm和8.72 Ω/cm2。涂层经1 kA大电流冲击20次后,电阻率变化为5.95%,在10 A工频电流作用5次后涂层电阻率变化为11.09%,经冲击电流和工频电流作用后涂层完好,未发现剥落、烧蚀和裂纹等破坏。

关键词 接地网碳钢导电涂层大电流冲击电化学    
Abstract

Epoxy based conductive anti-corrosion coatings were prepared on the surface of grounding grid Q235 carbon steel with graphite, carbon fiber andaluminum tripolyphosphateas pigments. The influence of the pigment/binder ratio (PBR) on the properties of the coatings was investigated such as the morphology and the electric conductivity of the coatings as well the corrosion behavior of Q235 carbon steel coated by coatings with an optimal PBR by immersion in salt solutions and burying in a selected soil from Shenyang test site. The results indicated that after buried in the soil, the bare Q235 steel suffered from serious corrosion and bubbles occurred on the E44 lacquer coating on the steel, in the contrast, the coatings with the optimal PBR showed excellent protectiveness for the steel even after buried for up to 1000 h in the soil. The volume resistivity and surface contact resistivity of the coatings are 0.65 Ω·cm and 8.72 Ω/cm2 respectively. The coatings exhibited excellent with standing capacity to high current impulse, such as their electrical resistance decreased by 5.95% and 11.09% for the ones suffered from a high current impulse of 1 kA for 20 times and a power frequency current of 10 A for 5 times respectively, while the surface of the coatings maintained unchanged without any destruction.

Key wordsgrounding grid    carbon steel    conductive coating    large scale current impulsion    electrochemistry
    

引用本文:

刘世念,王成,邓纪伦,李锡,朱圣龙,王福会. 接地网用导电防腐蚀涂层研究[J]. 中国腐蚀与防护学报, 2015, 35(6): 510-518.
Shinian LIU, Cheng WANG, Jilun DENG, Xi LI, Shenglong ZHU, Fuhui WANG. Epoxy Based Conductive Anti-corrosion Coatings for Grounding Grid. Journal of Chinese Society for Corrosion and protection, 2015, 35(6): 510-518.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.273      或      https://www.jcscp.org/CN/Y2015/V35/I6/510

图1  PBR对涂层性能的影响
Medium PBR
3:7 4:6 1:1
3.0%NaCl No corrosion detected after immersedfor 4 months No corrosion detected after immersed for 4 months Serious corrosion detected after immersed for 9 h
NSS No corrosion detected after exposed for 4 months No corrosion detected after exposed for 4 months Serious corrosion detected after exposed for 5 h
10%H2SO4 No corrosion detected after immersed for 4 months No corrosion detected after immersed for 4 months Serious bubbling occurred after immersed for 10 h
10%NaOH No corrosion detected after immersed for 4 months No corrosion detected after immersed for 4 months No corrosion detected after immersed for 4 months
表1  PBR对涂层防腐蚀性能的影响
图2  PBR为4:6和1:1时涂层的SEM像
图3  Q235碳钢在土壤中腐蚀后的宏观形貌
图4  带涂层的Q235碳钢经土壤腐蚀后的SEM像
图5  Q235碳钢在30 ℃土壤中腐蚀后的SEM像
图6  涂装导电防腐蚀涂层的Q235碳钢在土壤中的EIS谱
图7  Q235碳钢在土壤中的EIS谱
图8  带导电防腐和E44清漆涂层的Q235碳钢在土壤中的特征频率
图9  Q235碳钢在土壤中的腐蚀电位与时间的关系
图10  导电防腐蚀涂层电流冲击后电阻变化
[1] Chen G H, Jiang J W.Reason analysis and handling measures of grounding net corrosion in 220 kV Shuibei substation[J]. Elec. Equip., 2006, 7(4): 67
[1] (陈光辉, 姜建武. 220 kV水贝变电站地网腐蚀原因分析及改进措施[J]. 电力设备, 2006, 7(4): 67)
[2] Tan Z H, Zhu Z P, Pei F, et al.Influence of DC stray current on corrosion behavior of grounding grid materials in soils with different moisture content[J]. Corros. Sci. Proct. Technol., 2013, 25(3): 207
[2] (谭铮辉, 朱志平, 裴锋等. 直流杂散电流对不同含水率土壤中接地网材料腐蚀特性的影响[J]. 腐蚀科学与防护技术, 2013, 25(3): 207)
[3] Yan A, Hou J, Chen Y, et al.Study of the soil corrosion of Q235 steel ground grid in Weinan Shaanxi[J]. Mater. Sci., 2011, 47(1): 114
[4] Barbalat M, Lanarde L, Caron D, et al.Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection[J]. Corros. Sci., 2012, 55(1): 246
[5] Chen J S, Xiang C F, Huang X L.Conductive anticorrosive paint for ground system[J]. Elec. Power, 1997, 30(11): 63
[5] (陈健生, 项昌富, 黄显立. 电力接地网用导电防腐涂料[J]. 中国电力, 1997, 30(11): 63)
[6] Yan A J, Chen Y, Feng L J.Soil corrosion performance of several grounding net material[J]. Corros. Sci. Prot. Technol., 2010, 22(3): 197
[6] (闫爱军, 陈沂, 冯拉俊. 几种接地网材料在土壤中的腐蚀特性研究[J]. 腐蚀科学与防护技术, 2010, 22(3): 197)
[7] Xu C W, Hu X W.Investigation of anti-corrosive metallic material for earthing grid[J]. Power Syst. Technol., 2003, 27(8): 77
[7] (许崇武, 胡学文. 接地网防蚀金属材料性能实验研究[J]. 电网技术, 2003, 27(8): 77)
[8] Yan F J, Li X G.Corrosion and protection of grounding net in electric power system[J]. Shangdong Elec. Power, 2007, 33(1): 9
[8] (闫风洁, 李辛庚. 电力接地网腐蚀与防护技术的进展[J]. 山东电力技术, 2007, 33(1): 9)
[9] Marchebois H, Touzain S, Joiret S, et al.Zinc-rich powder coatings corrosion in sea water: Influence of conductive pigments[J]. Prog. Org. Coat., 2002, 45(4): 415
[10] Marco-A D, Wilson A.Conductive polymer blends: Preparation, properties and applications[J]. Macromol. Symp., 2002, 189(1): 83
[11] Liu B, Li Y, Lin H, et al.Effect of PVC on the diffusion behaviour of water through alkyd coatings[J]. Corros. Sci., 2002, 44(12):2657
[12] Yang L H, Liu F C, Han E-H.Anti-corrosion performance studies of the nano-ZnO polyurethane coatings[J]. Chin. J. Mater. Res., 2006, 20(4): 354
[12] (杨立红, 刘福春, 韩恩厚. 纳米氧化锌改性聚氨醋复合涂层的防腐性能[J]. 材料研究学报, 2006, 20(4): 354)
[13] Ma X Y, Liu C T.Investigation of the application of conductive filler in electrostatic conduction epoxy coatings[J]. Chin. Coat., 2010, 25(9): 52
[13] (马翔宇, 刘承泰. 导电填料在环氧导静电涂料中的应用探讨[J]. 中国涂料, 2010, 25(9): 52)
[14] Kohl M, Kalendová A, Stejska J.The effect of polyaniline phosphate on mechanical and corrosive properties of protective organic coatings containing high amounts of zinc metal particles[J]. Prog. Org. Coat., 2014, 77(2): 512
[15] Chen S, Zhu J, Zhou T, et al.Preparation and properties study of polyaniline conductive anti-fouling coatings[J]. Int. J. Electrochem. Sci., 2012, 7(9): 8170
[16] Wicks Jr Z, Jones N, Pappas S, et al.Organic Coatings: Science and Technology[M]. 3rd Ed., New York: Wiley-Interscience, 2007
[17] Prita P, Bhanudas N, Ghosh N.Low temperature synthesis of single-phase α-Fe2O3 nano-powders by using simple but novel chemical methods[J]. Powder Technol., 2009, 192(3): 245
[18] Dinesh V, Arvind Y.Structural and electrical conductivity of Mn doped hematite (α-Fe2O3) phase[J]. J. Mol. Struct., 2011, 995(1-3):157
[19] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
[19] (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[20] Chen Y, Wang X, Li J, et al.Long-term anticorrosion behaviour of polyaniline on mild steel[J]. Corros. Sci., 2007, 49(7): 3052
[21] Yang X, Li J, Croll S, et al.Degradation of low gloss polyurethane aircraft coatings under UV and prohesion alternating exposures[J]. Polym. Degrad. Stabil., 2003, 80(1): 51
[22] Grgur B, Elkais A, Gvozdenovć M, et al.Corrosion of mild steel with composite polyaniline coatings usingdifferent formulations[J]. Prog. Org. Coat., 2015, 79(1): 17
[23] Haruyama S, Asari M, Tsuru T.Mass transport in blistering of coated steel. In: KendigLeidheiser Jr M Eds., Corrosion Protection by Organic Coatings Pennington [M]. Pernington: The Electrochemical Society, 1987
[24] Li W, Zuo Y, Xiong J P, et al.EIS study of multilayer organic coatings on steel with different surface pretreatments[J]. J. Chem. Ind. Eng., 2008, 59(2): 420
[24] (李玮, 左禹, 熊金平等.不同表面处理条件下复合涂层体系失效过程的EIS特征[J]. 化工学报, 2008, 59(2): 420)
[25] Haruyama S, Hirayama R.Electrochemical impedance for degraded coated steel having pores[J]. Corrosion, 1991, 47(12): 952
[26] Kang X J, Fan W Y, Zhang Y Y, et al.Preparation and long-term anticorrosion protection of polyaniline waterborne coating[J]. J. Chin. Soc. Corros. Prot., 2012, 32(5): 393
[26] (康先进, 范文玉, 张彦英等. 聚苯胺长效防腐水性环保涂料的研制及性能研究[J]. 中国腐蚀与防护学报, 2012, 32(5): 393)
[27] Leng A, Streckel H, Stratmann M.The delamination of polymeric coatings from steel. Part I: Calibration of the Kelvin probe and basic delamination mechanism[J]. Corros. Sci., 1998, 41(3): 547
[28] Westing E, Ferrari G, Wit J.The determination of coating performance with impedance measurements-IV. Protective mechanisms of anticorrosion pigments[J]. Corros. Sci., 1994, 36(8): 1323
[29] Lu G, Cummer S, Blakeslee R, et al.Lightning morphology and impulse charge moment change of high peak current negative strokes[J] J. Geophys. Res., 2012, 117: D04212
[30] Rakov V.The physics of lightning[J]. Surv. Geophys., 2013, 34(6): 701
[1] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[2] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[3] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[4] 张腾, 刘静, 黄峰, 胡骞, 戈方宇. 交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[5] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[6] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[7] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[8] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[9] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[10] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[11] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[12] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[13] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.