Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (4): 339-345    DOI: 10.11902/1005.4537.2013.133
  论文 本期目录 | 过刊浏览 |
静磁场下硫酸盐还原菌对HSn70-1铜合金的腐蚀行为
陈碧, 郑碧娟, 张帆, 刘宏芳
华中科技大学化学与化工学院材料与环境化学研究所 武汉 430074
Corrosion Behavior of HSn70-1 Copper Alloy in SRB Containing Medium in Atatic Magnetic Field
CHEN Bi, ZHENG Bijuan, ZHANG Fan, LIU Hongfang
School of Chemistry and Chemical Engineering, Huazhong University of Sciences and Technology, Wuhan 430074, China
全文: PDF(2358 KB)   HTML
摘要: 采用失重法、电化学测量和表面分析技术研究了有、无静磁场环境下,在含有硫酸盐还原菌 (SRB) 的培养基中HSn70-1铜合金的腐蚀行为。结果表明:SRB条件下,HSn70-1铜合金腐蚀质量损失最大,无磁场下的腐蚀电流密度远大于有磁场条件下的,磁场的加入可以有效地减缓HSn70-1铜合金的腐蚀。SEM,EDS,XRD和XPS实验分析表明,静磁场下HSn70-1铜合金表面腐蚀产物膜均匀致密,腐蚀产物为金属硫化物,Cu的化合价以一价 (Cu+) 为主;而无磁场时腐蚀产物疏松,腐蚀产物硫化物中Cu主要为二价 (Cu2+)。静磁场条件下所形成的致密的Cu2S腐蚀产物层阻碍腐蚀的发生,有效地减缓了HSn70-1铜合金的腐蚀。
关键词 硫酸盐还原菌静磁场电化学测量HSn70-1铜合金    
Abstract:The corrosion behavior of HSn70-1copper alloy in sulfate-reducing bacteria (SRB) containing medium in the absence and presence of a static magnetic field (SMF) respectively was investigated by means of weight loss method, electrochemical measurement and surface analysis method. The results showed that the corrosion weight loss and the corrosion current density of the alloy was higher in the inoculated SRB medium in the absence of SMF rather than those in the presence of SMF. Thus the presence of a SMF can suppress effectively the corrosion of copper alloy. The results of SEM/EDS, XRD and XPS analysis showed that in the inoculated SRB medium a compact and uniform film formed on the surface of copper alloy in the presence of SMF, the corrosion products were cuprous sulfide; however in the absence of SMF the formed corrosion product on the alloy was loose and consisted of cupric sulfide. In fact the compact corrosion scale of cuprous sulfide could effectively suppress the SRB induced corrosion of copper alloy.
Key wordsSRB    static magnetic field    electrochemical measurement    copper alloy
收稿日期: 2013-07-02     
ZTFLH:  O646.6  
基金资助:国家自然科学基金项目 (51171067) 和深圳市基础研发基金项目(JC201005310696A) 资助
通讯作者: 通讯作者:刘宏芳,E-mail:hongf_liu@163.com     E-mail: hongf_liu@163.com
作者简介: 陈碧,男,1987年生,硕士生,研究方向为腐蚀与防护、环境化学、应用电化学

引用本文:

陈碧, 郑碧娟, 张帆, 刘宏芳. 静磁场下硫酸盐还原菌对HSn70-1铜合金的腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34(4): 339-345.
CHEN Bi, ZHENG Bijuan, ZHANG Fan, LIU Hongfang. Corrosion Behavior of HSn70-1 Copper Alloy in SRB Containing Medium in Atatic Magnetic Field. Journal of Chinese Society for Corrosion and protection, 2014, 34(4): 339-345.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.133      或      https://www.jcscp.org/CN/Y2014/V34/I4/339

[1] Beech I B, Sunner J A, Hiraoka K. Microbe-surface interactions in biofouling and biocorrosion processes [J]. Int. Microbiol., 2005, 8: 157-168
[2] Videla H A, Herrera L K. Microbiology influenced corrosion: looking to the future [J]. Int. Microbiol., 2005, 8: 169-180
[3] Liu H F, Huang L, Liu T, et al. Application and progress in bactericide of Sulfate reducing bacteria [J]. J. Chin. Soc. Corros. Prot., 2009, 29(2): 154-160 (刘宏芳, 黄玲, 刘涛等. 硫酸盐还原菌杀菌剂应用现状及研究进展 [J]. 中国腐蚀与防护学报, 2009, 29(2): 154-160)
[4] Dong Z H, Liu T, Liu H F. Influence of EPS isolated from thermophile sulfate-reducing bacteria on carbon steel corrosion [J]. Biofouling, 2011, 27(5): 487-495
[5] Liu T, Liu H F, Hu Y L, et al. Growth characteristics of thermophile sulfate-reducing bacteria and its effect on carbon steel [J]. Mater. Corros., 2009, 60(3): 218-224
[6] Fan M M, Liu H F, Dong Z H. Microbiologically influenced corrosion of X60 carbon steel in CO 2 -saturated oilfield flooding water [J]. Mater. Corros., 2013, 64(3): 242-246
[7] Nú?ez L, Reguera E, Corvo F, et al. Corrosion?of copper in seawater and its aerosols in a tropical island [J]. Corros. Sci., 2005, 47: 461-484
[8] Liu J, Zheng J S, Xu L M. The corrosion behavior of 70/30 copper of sulfate-reducing bacteria [J]. Mater. Corros., 2001, 52: 833-837
[9] Liu H F, Huang L, Liu T, et al. Synthesis and bactericidal activity of novel quaternary phosphonium salts [J]. Corros. Sci. Prot. Technol., 2009, 21(3): 316-319 (刘宏芳, 黄玲, 刘涛等. 新型季鏻盐抗菌剂的合成及其抗菌性能研究 [J]. 腐蚀科学与防护技术, 2009, 21(3): 316-319)
[10] Chen B, Qin S, Gan L, et al. Sterilization and degradation of resveratrol plant antimicrobial of sulfate reducing bacteria [J]. Corros. Prot., 2012, 33(Suppl.1): 149-151 (陈碧, 秦双, 甘李等. 白藜芦醇植物抗菌剂对硫酸盐还原菌的杀菌和降解性能研究 [J]. 腐蚀与防护, 2012, 33 (增刊1): 149-151)
[11] Kohno M, Yamazaki M, Kimura I, et al. Effect of static magnetic fields on bacteria: streptococcus mutans, staphylococcus aureus, and escherichia coli [J]. Pathophysiology, 2000, 7(2): 143-148
[12] Strasak L, Vetterl V, Smarda J. Effects of low-frequency magnetic fields on bacteria escherichia coli [J]. Bioelectrochem. Bioenerg., 2002, 55(1/2): 161-164
[13] Tian G, Wei A J, Huo F Y, et al. An experimental study of the magnetic field on metal corrosion [J]. Pipeline Tech. Equip., 2010, 1: 50-52 (田光, 魏爱军, 霍富永等. 磁场对金属腐蚀的实验研究 [J]. 管道技术与设备. 2010, 1: 50-52)
[14] Wang H P, Xu C W. Effects of electrostatic and magnetic fields on scaling and corrosion on surface of carbon steel [J]. J. Wuhan Univ., 2002, 35(6): 68-71 (王红萍, 许崇武. 静电场和磁场对碳钢表面结构和腐蚀的影响 [J]. 武汉大学学报, 2002, 35(6): 68-71)
[15] Yuan B Y, Wang C, Li L, et al. Investigation of the effects of the magnetic field on the anodic dissolution of copper in NaCl solutions with holography [J]. Corros. Sci., 2012, 58: 69-78
[16] Li K J, Ye Q, Chen B, et al. Effects of magnetic fields on microbiologically-influenced corrosion behavior of 304 stainless steel [J]. Corros. Prot., 2012, 33 (Suppl.1): 159-162 (李克娟, 叶琴, 陈碧等. 磁场对304不锈钢微生物腐蚀行为的影响 [J]. 腐蚀与防护, 2012, 33 (增刊1): 159-162)
[17] Li K J, Zheng B J, Chen B, et al. Effects of magnetic fields on microbiologically-influenced corrosion behavior of Q235 steel [J]. J.Chin. Soc. Corros. Prot., 2013, 33(6): 463-469 (李克娟, 郑碧娟, 陈碧等. 磁场对Q235钢的微生物腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2013, 33(6): 463-469)
[18] Liu H F, Huang L, Huang Z, et al. Specification of sulfate reducing bacteria biofilms accumulation effects on corrosion initiation [J]. Mater. Corros., 2007, 58: 44-48
[19] Mark C B, Leo W M L, Andrea R G, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn [J]. Appl. Surf. Sci., 2010, 257(3): 887-898
[20] Kear G, Barker B D, Walsh F C. Electrochemical corrosion of unalloyed copper in chloride media [J]. Corros. Sci., 2004, 46: 109-135
[21] Dong Z H, Shi W, Ruan H M, et al. Heterogeneous corrosion of mild steel under SRB-biofilm characterised by electrochemical mapping technique [J]. Corros. Sci., 2011, 53: 2978-2987
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[4] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[5] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[6] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[7] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[8] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[9] 于利宝, 闫茂成, 王彬彬, 舒韵, 许进, 孙成. 酸性土壤环境中Q235钢的微生物腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.
[10] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[11] 滕彧,陈旭,何川,王义闯,王冰. 显微组织对X70钢在含有硫酸盐还原菌的3.5%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
[12] 吕亚林,郑碧娟,刘宏伟,熊福平,刘宏芳,胡裕龙. 磁场对硫酸盐还原菌生物膜在304不锈钢表面吸附性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 652-658.
[13] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[14] 宋博强,陈旭,马贵阳,刘睿. SRB对X70管线钢在近中性pH溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
[15] 张帆, 刘宏伟, 陈碧, 刘宏芳. CO2和SRB共存产出水中咪唑啉衍生物的环境行为及缓蚀长效性研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 156-162.