Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (1): 74-80    DOI: 10.11902/1005.4537.2016.057
研究报告 Current Issue | Archive | Adv Search |
Assessment of Aging Performance of Polyurethane Coating for 7B04 Al-alloy with an Accelerated Testing Spectrum
Xiaofei CUI1, Xiaoming TAN2(), De WANG2, Ang QIAN2
1 Aeronautical Equipment Department of the Naval Equipment Department,Beijing 100841, China
2 Qingdao Branch, Naval Aeronautical University, Qingdao 266041, China
Download:  HTML  PDF(2752KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A model of equivalent conversion coefficient for UV radiation was firstly proposed, and which then was coupled with the existed acceleration corrosion testing method to establish a test spectrum for the assessment of aging performance of polyurethane coating on 7B04 Al-alloy plate. The aging behavior of polyurethane coating were characterized by means of macroscopic- and microscopic-observation, gloss loss-, color change- and adhesion strength-measurement, and electrochemical impedance spectroscopy (EIS) etc. Results show that the gloss loss and color change are not the suitable index for representing coating degradation degree, but the adhesive force and EIS are the appropriate ones to characterize the aging behavior of coating. The aging process of coating can be broadly divided into three stages: in the initial stage, the coating was intact with impedance above 1010 Ωcm2; in the middle stage, the anticorrosion performance of the coating was impaired to a certain extent with impedance within a range of 107~109 Ωcm2, while pores increase in the coating; and in the late stage, coating was failed with blisters on its surface, while, of which the impedance lowered to 106 Ωcm2 and the adhesive was reduced to 35% of the original value. It was found that the coating service life was ca 8 a, which is in line with the behavior conditions of the coating at the local airport. On this account, the rationality and feasibility coating accelerated aging test spectrum were verified.

Key words:  Al-alloy      polyurethane coating      accelerated testing spectrum      ultraviolet radiation      EIS      adhesion strength     
Received:  26 April 2016     
ZTFLH:  TG171  
  V255.5  

Cite this article: 

Xiaofei CUI, Xiaoming TAN, De WANG, Ang QIAN. Assessment of Aging Performance of Polyurethane Coating for 7B04 Al-alloy with an Accelerated Testing Spectrum. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 74-80.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.057     OR     https://www.jcscp.org/EN/Y2018/V38/I1/74

Fig.1  Accelerated testing flow chart of polyurethanecoating
UV radiationW/m2 Temperature / ℃
5 10 15 20 25
<0.05 0.0161 0.0218 0.0293 0.0389 0.0511
0.10 0.0238 0.0322 0.4316 0.0573 0.0752
0.15 0.0298 0.0404 0.0542 0.0719 0.0944
0.20 0.0350 0.0475 0.0656 0.0844 0.1109
0.25 0.0397 0.0596 0.0721 0.0957 0.1257
0.30 0.0440 0.0622 0.0798 0.1060 0.1392
0.35 0.0479 0.0649 0.0871 0.1155 0.1518
Table 1  Acceleration factors under the different conditions of temperature and UV radiation
Fig.2  Surface morphologies of the coating after aging for 0 cycle (a), 3 cycles (b), 5 cycles (c), 8 cycles (d) and 9 cycles (e)
Fig.3  SEM surface images of the coating after aging for 0 cycle (a), 3 cycles (b), 6 cycles (c) and 9 cycles (d)
Fig.4  Variations of color change and gloss loss of the coating with accelerated test time
Fig.5  Change of the adhesion of the coating with time
Fig.6  Nyquist plots of the coated specimen after aging for 0~2 cycles (initial stage) (a), 3~6 cycles (medium stage) (b), 7 cycles (medium stage) (c), 8~9 cycles (later stage) (d)
Fig.7  Bode plots of the coated specimen after aging for 0 cycle (a), 5 cycles (b), 7 cycles (c) and 9 cycles (d)
[1] Su J X, Zou Y, Chen K M, et al.Corrosion mechanism and characteristic of 7075-T6 aluminum alloy panel on airline air-craft[J]. J. Mech. Eng., 2013, 49(8): 91(苏景新, 邹阳, 陈康敏等. 民航客机7075-T6铝合金壁板的腐蚀特征与机制[J]. 机械工程学报, 2013, 49(8): 91)
[2] Tan X M, Chen Y L, Duan C M.Analysis of growth characterization of 3-D cracks in corroded lap joints of aircraft struc-ture[J]. Acta Aeronaut. Astronaut. Sin., 2005, 26(1): 66(谭晓明, 陈跃良, 段成美. 飞机结构搭接件腐蚀三维裂纹扩展特性分析[J]. 航空学报, 2005, 26(1): 66)
[3] Tiong U H, Clark G.The structural environment as a factor affecting coating failure in aircraft joints[J]. Proc. Eng., 2010, 2: 1393
[4] Ganesan A, Yamada M, Fukumoto M.The effect of CFRP surface treatment on the splat morphology and coating adhesion strength[J]. J. Therm. Spray Technol., 2014, 23: 236
[5] Tan X M, Zhang D F, Bian G X, et al.Effect of corrosion damage on fatigue crack initiation mechanism and growth behavior of high strength aluminum alloy[J]. J. Mech. Eng., 2014, 50(22): 76(谭晓明, 张丹峰, 卞贵学等. 腐蚀对新型高强度铝合金疲劳裂纹萌生机制及扩展行为的作用[J]. 机械工程学报, 2014, 50(22): 76)
[6] Reynolds L B, Twite R, Khobaib M, et al.Preliminary evaluation of the anticorrosive properties of aircraft coatings by elec-trochemical methods[J]. Prog. Org. Coat., 1997, 32: 31
[7] Pang R, Zuo Y, Tang Y M, et al.Failure behaviors of epoxy/acrylic polyurethane organic coatings in corrosive media by EIS[J]. CIESC J., 2010, 61: 2656(庞然, 左禹, 唐聿明等. 环氧/聚氨酯涂层在4种环境中失效行为的EIS[J]. 化工学报, 2010, 61: 2656)
[8] Zheng T L, Zhang H, Wang X, et al.Research on the photoaging of acrylic polyurethane coatings using electrochemical impedance spectroscopy[J]. Acta Aeronaut. Astronaut. Sin., 2007, 28: 714(郑天亮, 张华, 王轩等. 用EIS法研究丙烯酸聚氨酯涂层的光老化性能[J]. 航空学报, 2007, 28: 714)
[9] Bierwagen G, Brown R, Battocchi D, et al.Active metal-based corrosion protective coating systems for aircraft requiring no-chromate pretreatment[J]. Prog. Org. Coat., 2010, 68: 48
[10] Yang X F, Li J, Croll S G, et al.Degradation of low gloss polyurethane aircraft coatings under UV and prohesion alternating exposures[J]. Polym. Degrad. Stab., 2003, 80: 51
[11] Sun Z H, Zhang N, Cai J P, et al.Study on accelerated aging test of containing fluorine polyurethane topcoat applied in air-craft[J]. Mater. Eng., 2009, (10): 57(孙志华, 章妮, 蔡建平等. 航空用氟聚氨酯涂层加速老化试验研究[J]. 材料工程, 2009, (10): 57)
[12] Farrier L M, Szaruga S L.Sample preparation and characterization of artificially aged aircraft coatings for microstructural analysis[J]. Mater. Charact., 2005, 55: 179
[13] He C W, Ma S S, Liu H.Study on accelerated test spectrum for civil airplane protection system[J]. Equip. Environ. Eng., 2013, 10(1): 41(贺崇武, 马双双, 刘辉. 民用飞机防护体系加速试验谱研究[J]. 装备环境工程, 2013, 10(1): 41)
[14] Liu W T, Li Y H.Prediction Technology of Calendar Life of Aircraft Structures [M]. Beijing: Aeronautic Industry Press, 2004: 84(刘文珽, 李玉海. 飞机结构日历寿命体系评定技术 [M]. 北京: 航空工业出版社, 2004: 84)
[15] Sun Z H, Zhang N, Cai J P, et al.Electrochemical impedance varieties of zinc yellow polypropylene coated aluminum alloy used in aircraft during the accelerated degradation test[J]. Acta Aeronaut. Astronaut. Sin., 2008, 29: 746(孙志华, 章妮, 蔡健平等. 航空铝合金涂层体系加速老化试验前后电化学阻抗变化[J]. 航空学报, 2008, 29: 746)
[16] Allahar K N, Hinderliter B R, Bierwagen G P, et al.Cyclic wet drying of an epoxy coating using an ionic liquid[J]. Prog. Org. Coat., 2008, 62: 87
[17] Hinderliter B R, Croll S G, Tallman D E, et al.Interpretation of EIS data from accelerated exposure of coated metals based on modeling of coating physical properties[J]. Electrochim. Acta, 2006, 51: 4505
[18] Signor A W, VanLandingham M R, Chin J W. Effects of ultraviolet radiation exposure on vinyl ester resins: Characterization of chemical, physical and mechanical damage[J]. Polym. Degrad. Stab., 2003, 79: 359
[19] Scrinzi E, Rossi S, Deflorian F.Influence of natural and artificial weathering on aesthetic and protective properties of organic coatings[J]. Corros. Rev., 2011, 29: 275
[20] Guseva O, Brunner S, Richner P.Service life prediction for aircraft coatings[J]. Polym. Degrad. Stab., 2003, 82: 1
[1] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[2] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[4] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[5] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[6] Jingling MA, Shuai TONG, Fengzhang REN, Guangxin WANG, Yaqiong LI, Jiuba WEN. Influences of Inhibitor L-Cysteine/zinc Oxide on Electrochemical Performance of 3102 Al-alloy in Alkaline Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[7] Lixin HAO, Ruiling JIA, Huixia ZHANG, Wei ZHANG, Ting ZHAO, Xiwei ZHAI. Influence of Inhomogeneity of Tandem Welding Joint of 7A52 Al-alloy on Protectiveness of Micro-arc Oxidation Films on Its Surface[J]. 中国腐蚀与防护学报, 2018, 38(3): 219-225.
[8] Zhao YANG, Huiying SHI, Bailing JIANG, Yanfeng GE, Jing ZHANG, Manyu ZHANG, Yan LI. Effect of Pulse Current on Micro-arc Oxidation Process for 1050 Al-alloy[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.
[9] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[10] Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[11] Guangyi CAI,Haowei WANG,Weihang ZHAO,Zehua DONG. Effect of Nano-CeO2 on Anticorrosion Performance for Polyurethane Coating[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[12] Lei CHEN,Zhiliang PEI,Jinquan XIAO,Jun GONG,Chao SUN. Characterization of Structure and Property of TiAlN Coatings Deposited by Filtered Arc Ion Plating[J]. 中国腐蚀与防护学报, 2017, 37(3): 241-246.
[13] Juan ZHANG,Ziqiang LIU,Tao FENG,Shifeng WEN,Ruiqing CHEN. Effect of Carbon Nanotube on Properties of Epoxy Coating[J]. 中国腐蚀与防护学报, 2017, 37(3): 254-260.
[14] Yanjie LIU,Zhenyao WANG,Binbin WANG,Yan CAO,Yang HUO,Wei KE. Mechanism of Galvanic Corrosion of Coupled 2024 Al-alloy and 316L Stainless Steel Beneath a Thin Electrolyte Film Studied by Real-time Monitoring Technologies[J]. 中国腐蚀与防护学报, 2017, 37(3): 261-266.
[15] Deqiang LIU,Liming KE,Weiping XU,Li XING,Yuqing MAO. Intergranular Corrosion Behavior of Friction-stir Welding Joint for 20 mm Thick Plate of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
No Suggested Reading articles found!