Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (6): 477-483    DOI: 10.11902/1005.4537.2019.004
  研究报告 本期目录 | 过刊浏览 |
温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究
陈旭1(),马炯1,李鑫1,吴明1,2,宋博2
1. 辽宁石油化工大学石油天然气工程学院 抚顺 113001
2. 海洋石油工程股份有限公司 天津 300451
Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution
CHEN Xu1(),MA Jiong1,LI Xin1,WU Ming1,2,SONG Bo2
1. College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
2. Offshore Oil Engineering Co. , Ltd. , Tianjin 300451, China
全文: PDF(3219 KB)   HTML
摘要: 

研究了温度对硫酸盐还原菌 (SRB) 活性的影响,并采用慢应变速率拉伸实验研究了不同温度下X70钢在含SRB的海泥模拟溶液中应力腐蚀行为及其开裂机理。结果表明,SRB在海泥模拟溶液中生存温度范围为20~40 ℃,且随温度增加,SRB活性增加,数量增大。X70钢表面生物膜保护性与SRB活性和数量密切相关。20 ℃时,由于SRB数量最少,X70钢在含SRB海泥中应力腐蚀开裂 (SCC) 敏感性最小;30 ℃时,X70钢表面的生物膜与基体金属构成大阴极小阳极面积比的腐蚀原电池,耐蚀性最低,此时SCC机理为阳极溶解和氢致开裂共同作用下的混合断裂;40 ℃时SRB活性最好,X70钢表面形成较为完整生物膜,耐蚀性最好,但SCC敏感性最高,其开裂机理为氢致开裂。

关键词 X70钢海泥模拟溶液温度硫酸盐还原菌应力腐蚀开裂    
Abstract

The stress corrosion cracking (SCC) behavior of X70 steel in an artificial sea mud solution containing SRB at different temperatures were studied by slow strain rate tensile tests. The results showed that SRB survived in the range of 20~40 ℃ in the artificial sea mud solution. The temperature has a great influence on the SRB activity. The activity and amount of SRB increased with the increase of temperature. The protectiveness of the biofilm formed on X70 steel surface was closely related with the activity and quantity of SRB. The amount of SRB was the least at 20 ℃, which resulted in the lowest SCC sensitivity of X70 steel in the simulated sea mud solution. At 30 ℃, corrosion galvanic cell with large ratio of cathode area to anode area could formed between the biofilm and the steel substrate, while the fracture of X70 steel was the mixed ductile-brittle fracture due to the action of anodic dissolution and hydrogen-induced cracking. The relatively complete biofilm formed on X70 steel at 40 ℃, in that case however, X70 steel exhibited the highest SCC sensitivity and the cracking mechanism was hydrogen induced cracking.

Key wordsX70 steel    artificial sea mud solution    temperature    sulfate-reducing bacteria    stress corrosion cracking
收稿日期: 2019-01-08     
ZTFLH:  TG174.36  
基金资助:国家自然科学基金(51574147);辽宁省教育厅重点项目(L2017LZD004)
通讯作者: 陈旭     E-mail: cx0402@sina.com
Corresponding author: Xu CHEN     E-mail: cx0402@sina.com
作者简介: 陈旭,女,1974年生,博士,教授

引用本文:

陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
Xu CHEN, Jiong MA, Xin LI, Ming WU, Bo SONG. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 477-483.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.004      或      https://www.jcscp.org/CN/Y2019/V39/I6/477

图1  SSRT试样示意图
图2  SRB在不同温度下南海海泥模拟溶液中的生长曲线
图3  X70钢在不同温度含SRB的海泥溶液中的Ecorr
图4  X70钢在不同温度下含SRB海泥模拟溶液中的SSRT曲线
图5  X70钢在不同温度下含SRB海泥模拟溶液中延伸率和断面收缩率的变化
图6  X70钢在不同温度含SRB海泥溶液中的断口SEM像
[1] Wu J H, Chen G Z. Corrosion protection of submarine pipeline—Lecture on pipeline corrosion and protection [J]. Pipeline Techn. Equip., 2000, (6): 35
[1] (吴建华, 陈光章. 海底管线的腐蚀保护——管道腐蚀与防护讲座之六 [J]. 管道技术与设备, 2000, (6): 35)
[2] Duan J Z, Ma S D, Huang Y L. Study on regional seabed sediment induced corrosion [J]. Corros. Sci. Prot. Technol., 2001, 13: 37
[2] (段继周, 马士德, 黄彦良. 区域性海底沉积物腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2001, 13: 37)
[3] Yu N, Gao J F, Zhang G A, et al. Corrosion behavior of carbon steel pipelines under different deposits in oil and gas transportation [J]. J. Univ. Sci. Technol. Beijing, 2015, (4): 461
[3] (喻能, 高继峰, 张国安等. 碳钢油气输送管道不同沉积物下的腐蚀行为 [J]. 工程科学学报, 2015, (4): 461)
[4] Fang B Y, Wang J Q, Zhu Z Y, et al. The stress corrosion cracking of buried pipelines in near-neutral-pH and high-pH solutions [J]. Acta Metall. Sin., 2001, 37: 453
[4] (方丙炎, 王俭秋, 朱自勇等. 埋地管道在近中性pH和高pH环境中的应力腐蚀开裂 [J]. 金属学报, 2001, 37: 453)
[5] Chen X, Li X G, Du C W, et al. Effect of cathodic protection on corrosion of pipeline steel under disbonded coating [J]. Corros. Sci., 2009, 51: 2242
[6] Zhang L, Li X G, Du C W, et al. Progress in study of factors affecting stress corrosion cracking of pipeline steels [J]. Corros. Sci. Prot. Technol., 2009, 21: 62
[6] (张亮, 李晓刚, 杜翠薇等. 管线钢应力腐蚀影响因素的研究进展. 腐蚀科学与防护技术, 2009, 21: 62)
[7] Chen X, Wu M, He C, et al. Effect of applied potential on SCC of X80 pipeline steel and its weld joint in Ku'erle soil simulated solution [J]. Acta Metall. Sin., 2010, 46: 951
[7] (陈旭, 吴明, 何川等. 外加电位对X80钢及其焊缝在库尔勒土壤 模拟溶液中SCC行为的影响 [J]. 金属学报, 2010, 46: 951)
[8] Wang S R, Du C W, Liu Z Y, et al. Field experimental study on stress corrosion cracking behavior of Q235 and X70 steels in Singapore soil [J]. J. Mech. Eng., 2015, 51(12): 30
[8] (王胜荣, 杜翠薇, 刘智勇等. Q235与X70钢在新加坡土壤中的应力腐蚀行为现场试验研究 [J]. 机械工程学报, 2015, 51(12): 30)
[9] Wang B Y, Huo L X, Wang D P, et al. Stress corrosion cracking of X80 pipeline steel in near-neutral pH values solutions [J]. J. Tianjin Univ., 2007, 40: 757
[9] (王炳英, 霍立兴, 王东坡等. X80管线钢在近中性pH溶液中的应力腐蚀开裂 [J]. 天津大学学报, 2007, 40: 757)
[10] Eslami A, Fang B, Kania R, et al. Stress corrosion cracking initiation under the disbonded coating of pipeline steel in near-neutral pH environment [J]. Corros. Sci., 2010, 52: 3750
[11] Abedi S S, Abdolmaleki A, Adibi N. Failure analysis of SCC and SRB induced cracking of a transmission oil products pipeline [J]. Eng. Fail. Anal., 2007, 14: 250
[12] Little B, Staehle R, Davis R. Fungal influenced corrosion of post-tensioned cables [J]. Int. Biodeterior. Biodegrad., 2001, 47: 71
[13] Rao T S, Nair K V K. Microbiologically influenced stress corrosion cracking failure of admiralty brass condenser tubes in a nuclear power plant cooled by freshwater [J]. Corros. Sci., 1998, 40: 1821
[14] Kholodenko V P, Jigletsova S K, Chugunov V A, et al. Chemicomicrobiological diagnostics of stress corrosion cracking of trunk pipelines [J]. Appl. Biochem. Microbiol., 2000, 36: 594
[15] Wu T Q, Yan M C, Zeng D C, et al. Stress corrosion cracking of X80 steel in the presence of sulfate-reducing bacteria [J]. J. Mater. Sci. Technol., 2015, 31: 413
[16] Biezma M V. The role of hydrogen in microbiologically influenced corrosion and stress corrosion cracking [J]. Int. J. Hydrogen Energy, 2001, 26: 515
[17] Qian C R. Laboratory Experiments in Microbiology [M]. 2nd Ed. Beijing: Peking University Press, 2008
[17] (钱存柔. 微生物学实验教程 [M]. 第2版. 北京: 北京大学出版社, 2008)
[18] Alabbas F M, Williamson C, Bhola S M, et al. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80) [J]. Int. Biodeterior. Biodegrad., 2013, 78: 34
[19] Cetin D, Aksu M L. Corrosion behavior of low-alloy steel in the presence of Desulfotomaculum sp. [J]. Corros. Sci., 2009, 51: 1584
[20] Chen X, Wang G F, Gao F J, et al. Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings [J]. Corros. Sci., 2015, 101: 1
[21] Zhu R X, Na J Y, Guo S W, et al. Corrosion mechanism of sulfate-reducing bacteria [J]. J. Air Force Eng. Univ. (Nat. Sci. Ed.), 2000, 1(3: 12
[21] (朱绒霞, 那静彦, 郭生武等. 硫酸盐还原菌的腐蚀机理 [J]. 空军工程大学学报 (自然科学版), 2000, 1(3): 12)
[22] Chen X, Gao F J, Song W Q. Effects of CO2 on SRB influenced corrosion behavior of X70 steel in near-neutral pH solution [J]. Corros. Sci. Prot. Technol., 2017, 29: 103
[22] (陈旭, 高凤娇, 宋武琦. CO2对X70钢在近中性pH值溶液中硫酸盐还原菌腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2017, 29: 103)
[23] Liang P, Li X G, Du C W, et al. Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution [J]. Mater. Des., 2009, 30: 1712
[24] Song B Q, Chen X, Ma G Y, et al. Effect of SRB on SCC behaviour of X70 pipeline steel and its weld joint in near-neutral pH solution [J]. Trans. Mater. Heat Treat., 2016, 37(4): 122
[24] (宋博强, 陈旭, 马贵阳等. SRB对X70钢及其焊缝在近中性pH溶液中SCC行为的影响 [J]. 材料热处理学报, 2016, 37(4): 122)
[25] Wu M, Chen X, He C, et al. Effect of CO2 partial pressure on SCC behavior of welded X80 pipeline in simulated soil solution [J]. Acta Metall. Sin. (Engl. Lett., 2011, 24: 65
[26] Liu Z Y, Li X G, Du C W, et al. Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment [J]. Corros. Sci., 2008, 50: 2251
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] 刘晓, 王海, 朱忠亮, 李瑞涛, 陈震宇, 方旭东, 徐芳泓, 张乃强. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[4] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[5] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[6] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[7] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[8] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[9] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[10] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[11] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[12] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[13] 韦鉴峰, 付洪田, 王廷勇, 许实, 王辉, 王海涛. 烧结温度对含石墨烯Ti/IrTaSnSb金属氧化物阳极性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 248-254.
[14] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[15] 于利宝, 闫茂成, 王彬彬, 舒韵, 许进, 孙成. 酸性土壤环境中Q235钢的微生物腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.