Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (4): 939-946    DOI: 10.11902/1005.4537.2025.066
Current Issue | Archive | Adv Search |
Effect of Pickling Process on Corrosion Resistance of Double Cold-reduced Tinplate with Different Tin Coating Masses
ZHOU Qianyong1, LAI Yang2, LI Qian2,3()
1 Cold Rolling Mill, Baoshan Iron and Steel Co., Ltd., Shanghai 200941, China
2 School of Materials Science and Engineering & State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China
3 College of Materials Science and Engineering & National Engineering Research Center for Magnesium Alloys & National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing 400044, China
Cite this article: 

ZHOU Qianyong, LAI Yang, LI Qian. Effect of Pickling Process on Corrosion Resistance of Double Cold-reduced Tinplate with Different Tin Coating Masses. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 939-946.

Download:  HTML  PDF(16421KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The pickling process is a crucial step in the production of tinplate, and alterations in process parameters can affect the corrosion behavior of tinplate, which varies with changes in the tin coating mass. Currently, there is a lack of systematic research on the coupled influence mechanism of the pickling process and tin coating mass on the corrosion behavior of tinplate. Herein, the influence of electrolytic pickling and chemical pickling on the corrosion resistance of tinplates with different tin coating mass was assessed by means of neutral salt spray (NSS) testing, electrochemical testing methods and scanning electron microscopy (SEM), in terms of the variation of corrosion resistance and microstructure of coatings with varying tin coating weights and pickling processes. The results indicate that as the tin coating mass increases, the negative impact of switching to a chemical pickling process on the properties of tinplate gradually diminishes, which may be ascribed to the improved coating microstructure and property with the increasing tin mass. Furthermore, in case of high tin coating mass, the tinplate being subjected to chemical pickling can provide corrosion resistance comparable with that being subjected to electrolytic pickling.

Key words:  tinplate      pickling      corrosion resistance      electrochemical performance     
Received:  25 February 2025      32134.14.1005.4537.2025.066
ZTFLH:  TG174  
Corresponding Authors:  LI Qian, E-mail: cquliqian@cqu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.066     OR     https://www.jcscp.org/EN/Y2025/V45/I4/939

Fig.1  Surface macro-morphologies of tinplate samples plated with 1.1 g/m2 (a1-h1, a2-h2), 5.6 g/m2 (a3-h3, a4-h4) and 11.2 g/m2 (a5-h5, a6-h6) amounts of tin and post-treated by electrolytic pickling (a1-h1, a3-h3, a5-h5) or chemical pickling (a2-h2, a4-h4, a6-h6) after neutral salt spray test for 1 d (a), 2 d (b), 4 d (c), 7 d (d), 10 d (e), 20 d (f), 30 d (g) and 40 d (h)
Fig.2  Mass loss curves of tinplate samples plated with different amounts of tin and post-treated by electrolytic pickling or chemical pickling during neutral salt spray test for 40 d: (a) 1.1  g/m2, (b) 5.6 g/m2, (c) 11.2  g/m2
Fig.3  Potentiodynamic polarization curves of tinplate samples plated with different amounts of tin and post-treated by electrolytic pickling or chemical pickling during immersion in 3.5%NaCl solution
Coating mass / g·m-2φcorr / V (vs.SCE)Icorr / A·cm-2βa / V·dec-1βc / V·dec-1Rp / Ω·cm2
EP-1.1-0.461.86 × 10-80.060.139.87 × 105
CP-1.1-0.493.01 × 10-80.050.196.12 × 105
EP-5.6-0.525.69 × 10-90.200.339.60 × 106
CP-5.6-0.538.78 × 10-90.340.267.23 × 106
EP-11.2-0.576.79 × 10-90.240.429.68 × 106
CP-11.2-0.577.78 × 10-90.270.449.36 × 106
Table 1  Fitting electrochemical parameters of potentiodynamic polarization curves in Fig.3
Fig.4  Nyquist (a) and Bode (b) plots of tinplate samples plated with different amounts of tin and post-treated by electrolytic pickling or chemical pickling during immersion in 3.5%NaCl solution
Fig.5  Equivalent circuit models for EIS fitting: (a) R(Q(R(QR))), (b) R(QR)(QR)
Coating mass / g·m-2Rs / Ω·cm2Qm-Y0 / Ω-1·cm-2·s-n1Qm-nRm / Ω·cm2Qdl-Y0 / Ω-1·cm-2·s-n1Qdl-nRct / Ω·cm2
EP-1.18.176.62 × 10-60.774.21 × 1053.86 × 10-60.863.13 × 103
CP-1.110.551.03 × 10-50.781.39 × 1056.45 × 10-60.861.62 × 103
EP-5.67.329.35 × 10-60.904.98 × 1062.17 × 10-50.799.94 × 102
CP-5.68.637.28 × 10-60.892.31 × 1062.85 × 10-50.791.78 × 102
EP-11.212.348.21 × 10-60.884.63 × 1061.42 × 10-50.763.19 × 103
CP-11.26.768.62 × 10-60.893.59 × 1062.66 × 10-50.807.85 × 102
Table 2  Fitting electrochemical parameters of EIS in Fig.4
Fig.6  SEM images and EDS element mappings of tinplate samples plated with 1.1 g/m2 (a, b), 5.6 g/m2 (c, d) and 11.2  g/m2 (e, f) amounts of tin and post-treated by electrolytic pickling (a, c, e) or chemical pickling (b, d, f)
Coating mass / g·m-2EPCP
FeSnFeSn
1.167.7332.2779.0021.00
5.617.4482.5619.3880.62
11.23.5496.463.9096.10
Table 3  EDS determined surface compositions of tinplate samples plated with different amounts of tin and post-treated by electrolytic pickling or chemical pickling (atomic fraction / %)
[1] Xia D H, Song S Z, Wang J H, et al. Research progress on corrosion mechanism of tinned steel sheet used for food parkaging [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 513
(夏大海, 宋诗哲, 王吉会 等. 食品包装用镀锡薄钢板的腐蚀机理研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 513)
doi: 10.11902/1005.4537.2016.225
[2] Dean R R, Thwaites C J. Tinplate and tin coating technology [J]. JOM, 1987, 39: 42
[3] Liu Z, Deng C M, Wei J S, et al. Fast evaluation of resistance to high temperature steam sterilization process for organic coating coated tinplate by electrochemical method [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 883
(刘 喆, 邓成满, 魏军胜 等. 涂覆有机涂层的镀锡薄钢板耐蒸煮性能电化学快速检测技术研究 [J]. 中国腐蚀与防护学报, 2024, 44: 883)
[4] Huang J G, Li N, Jiang L M, et al. Research and progress in the corrosion resistance of tinplate and its progress [J]. Electroplat. Pollut. Control, 2003, 23(6): 5
(黄久贵, 李 宁, 蒋丽敏 等. 镀锡板耐蚀性研究及进展 [J]. 电镀与环保, 2003, 23(6): 5)
[5] Ma C, Zhou B, Xia D H, et al. In-situ study the corrosion degradation mechanism of tinplate in salty water by scanning electrochemical microscopy [J]. Russ. J. Electrochem., 2018, 54: 216
[6] Liu B Y, Wang Y W, Guan Y. A study of corrosion performance of tinplate with different tin coating thickness in H2SO4 solution [J]. Materialwiss. Werkstofftech., 2021, 52: 433
[7] Álvarez D, Collazo A, Nóvoa X R, et al. The anticorrosive properties of sol-gel films doped with hydrotalcite nanoparticles applied on tinplate [J]. Electrochim. Acta, 2014, 131: 137
[8] Awan G H, Ul Hasan F. The morphology of coating/substrate interface in hot-dip-aluminized steels [J]. Mater. Sci. Eng., 2008, 472A: 157
[9] Wang X D, Huang J G, Li J Z, et al. International and domestic development situation of tinplate steel [J]. Shanghai Met., 2008, 30(4): 45
(王晓东, 黄久贵, 李建中 等. 国内外镀锡板生产发展状况 [J]. 上海金属, 2008, 30(4): 45)
[10] Huang X Q, Han J J, Li N, et al. Effects of weight loss character of black plate on corrosion resistance of tinplate [J]. Electroplat. Pollut. Control., 2004, 24(4): 7
(黄兴桥, 韩家军, 李 宁 等. 原板酸洗失重性能对镀锡板耐蚀性的影响 [J]. 电镀与环保, 2004, 24(4): 7)
[11] Huang X Q, Li N, Jiang L M, et al. Effect of black plate on corrosion resistance of T5 tinplate [J]. J. Iron Steel Res. Int., 2006, 13: 59
[12] Dai W W. Analysis of influencing factors of lead content within tinplate surface by MSA solution [J]. Baosteel Technol., 2021, (4): 47
(戴伟伟. MSA镀液体系下镀锡板面铅含量影响因素分析 [J]. 宝钢技术, 2021, (4): 47)
[13] Liu B, Li B H, Zheng Z, et al. Effect of electrochemical pickling of black plate on porosity of tin plate [J]. Electroplat. Finish., 2010, 29(1): 19
(刘 彪, 李兵虎, 郑 振 等. 原板的电化学酸洗对镀锡板表面形貌及孔隙率的影响 [J]. 电镀与涂饰, 2010, 29(1): 19)
[14] Xia D H, Song S Z, Wang J H, et al. Corrosion behavior of tinplate in NaCl solution [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 717
[15] Li D Z, Conway P P, Liu C Q. Corrosion characterization of tin-lead and lead free solders in 3.5wt.%NaCl solution [J]. Corros. Sci., 2008, 50: 995
[16] Chen S, Xie L, Xue F. X-ray photoelectron spectroscopy investigation of commercial passivated tinplate surface layer [J]. Appl. Surf. Sci., 2013, 276: 454
[17] Caiazzo F C, Brambilla L, Montanari A, et al. Chemical and morphological characterization of commercial tinplate for food packaging [J]. Surf. Interface Anal., 2018, 50: 430
[18] Stern M, Geary A L. Electrochemical Polarization: I. A theoretical analysis of the shape of polarization curves [J]. J. Electrochem. Soc, 1957, 104: 56
[19] Song H, Fang Y, Wang Y Q, et al. Development and key process research of low tinplating steel plate [J]. Mater. Prot., 2019, 52(5): 102
(宋 浩, 方 圆, 王雅晴 等. 低锡量镀锡板开发及关键工艺研究 [J]. 材料保护, 2019, 52(5): 102)
[20] Zhou D J, Wang J H, Gao Y, et al. Corrosion behavior of tinplate in NaCl solution under different temperature [J]. Int. J. Electrochem. Sci., 2017, 12: 192
[1] YUE Rui, LIU Yongyong, YANG Lijing, ZHU Xinglong, CHEN Quanxin, A Naer, ZHANG Qingke, SONG Zhenlun. Effect of Laser Surface Remelting on Microstructure and Properties of Biodegradable Zn-0.4Mn Alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1127-1134.
[2] ZHANG Xiongbin, DANG En, YU Xiaojing, TANG Yufei, ZHAO Kang. Research Status and Progress on Corrosion Performance of Super Martensitic Stainless Steel for Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[3] CHEN Yuqiang, RAN Guanglin, LU Dingding, HUANG Lei, ZENG Liying, LIU Yang, ZHI Qian. Effect of Cyclic Strengthening on Corrosion Behavior of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1051-1060.
[4] RAN Renhao, SHAN Huilin, ZHANG Pengjie, WANG Dongmei, SI Jiajia, XU Guangqing, LV Jun. Preparation and Corrosion Resistance of Surface Mg-alloying NdFeB Magnets[J]. 中国腐蚀与防护学报, 2025, 45(4): 1117-1126.
[5] LI Mao, DENG Ke, CHEN Yanxiang, LIU Zhonghao, LI Shang, GUO Yuting, DONG Xuanpu, CAO Huatang. Influence of N2 Flow and Target-substrate Distance on Microstructure and Corrosion Resistance Properties of Multi-arc Ion Plated AlSiN Nano-composite Coatings[J]. 中国腐蚀与防护学报, 2025, 45(4): 1041-1050.
[6] ZHAO Lijia, CUI Xinyu, WANG Jiqiang, XIONG Tianying. Corrosion Behavior of Cold-sprayed B4C/Al Composite Coating in Boric Acid Solution[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[7] WEI Kezheng, JIANG Wenlong, GONG Yiwei, QIU Xin, DING Hanlin, XIANG Chongchen, WANG Zijian. Effect of Aging Time on Precipitation of Second Phase and Corrosion Performance of Prismatic Plane of As-forged AZ80 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1557-1565.
[8] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[9] LU Tianai, JIANG Wenhao, WU Wei, ZHANG Junxi. Surface Modification of Corrosion-resistant Cast Iron Based on Functional Requirements of Grounding Materials[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[10] MA Jinyao, DONG Nan, GUO Zhensen, HAN Peide. Effect of B and Ce Micro-alloying on Secondary Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[11] LYU Xiaoming, WANG Zhenyu, HAN En-Hou. Preparation and Corrosion Resistance of Nano-ZrO2 Modified Epoxy Thermal Insulation Coatings[J]. 中国腐蚀与防护学报, 2024, 44(5): 1234-1242.
[12] CHENG Yonghe, FU Junwei, ZHAO Maomi, SHEN Yunjun. Research Progress on Corrosion Resistance of High-entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[13] LIU Zhe, DENG Chengman, WEI Junsheng, XIA Da-Hai. Fast Evaluation of Resistance to High Temperature Steam Sterilization Process for Organic Coating Coated Tinplate by Electrochemical Method[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[14] TIAN Mengzhen, WANG Yong, LI Tao, WANG Chuan, GUO Quanzhong, GUO Jianxi. Effect of Electrical Parameters on Energy Consumption and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[15] MA Xiaowei, XUE Rongjie, WANG Taotao, YANG Liang, LIU Zhenguang. Comparison of Corrosion Resistance of Zr-based Amorphous Alloys and Traditional Alloys in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(4): 949-956.
No Suggested Reading articles found!