Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (4): 1117-1126    DOI: 10.11902/1005.4537.2024.288
Current Issue | Archive | Adv Search |
Preparation and Corrosion Resistance of Surface Mg-alloying NdFeB Magnets
RAN Renhao1, SHAN Huilin1, ZHANG Pengjie2, WANG Dongmei1,3, SI Jiajia1,3, XU Guangqing1,3(), LV Jun1,3
1 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
2 BGRIMM Magnetic Materials and Technology Co., Ltd., Beijing 102600, China
3 Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Engineering Research Center of High Performance Copper Alloy Materials and Processing, Ministry of Education, National-Local Joint Engineering Research Center of Nonferrous Metals and Processing Technology, Hefei 230009, China
Cite this article: 

RAN Renhao, SHAN Huilin, ZHANG Pengjie, WANG Dongmei, SI Jiajia, XU Guangqing, LV Jun. Preparation and Corrosion Resistance of Surface Mg-alloying NdFeB Magnets. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1117-1126.

Download:  HTML  PDF(19704KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

NdFeB magnets of poor corrosion resistance was subjected to surface Mg-alloying via magnetron sputtering technique and followed by thermal diffusion treatment, so that to improve the corrosion resistance of the magnets. The corrosion resistance of the surface Mg alloying NdFeB magnets in 3.5%NaCl solution is investigated by static immersion test corrosion electrochemical measurements and accelerated aging tests to optimize the preparation parameters of the surface Mg alloying. The surface Mg alloying NdFeB magnets before and afer corrosion test are characterized by X-ray diffractometer, X-ray photoelectron spectrometer and scanning electron microscope, as well as by atomic force microscope for determining the potential difference between the phases within the magnets during corrosion process. Results show that the magnets subjected to Mg-sputtering and then diffusion treated at 550 ℃ for 105 min shows the best corrosion resistance, with Ecorr of -0.684 V and Icorr of 1.055 × 10-6 A·cm-2, which is an order of magnitude lower than that of the bare magnets (6.896 × 10-5 A·cm-2). The mechanism related with the enhancement of corrosion resistance may be that the Mg atoms diffuse into the intergranular of the magnets, stabilizing the Nd-rich phase in grain boundaries and relieving the potential difference between the matrix and the intergranular, thus reducing the free-corrosion tendency of NdFeB magnets.

Key words:  NdFeB      surface Mg alloying      magnetron sputtering      grain boundary diffusion      corrosion resistance     
Received:  05 September 2024      32134.14.1005.4537.2024.288
ZTFLH:  TG174  
Fund: National Key Research and Development Program(2022YFB3504800)
Corresponding Authors:  XU Guangqing, E-mail: gqxu1979@hfut.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.288     OR     https://www.jcscp.org/EN/Y2025/V45/I4/1117

Fig.1  XRD patterns of NdFeB and NdFeB(Mg) treated under different conditions (a) and polished NdFeB(Mg)-550-105 specimen (b)
Fig.2  XPS survey spectra of NdFeB, Mg/NdFeB, NdFeB(Mg)-550-105 and NdFeB(Mg)-550-105-m specimens (a), and corresponding high resolution patterns of Mg 1s (b)
Fig.3  SEM cross-sectional morphologies and EDS analysis results of Mg/NdFeB (a), NdFeB(Mg)-500-105 (b), NdFeB(Mg)-550-105 (c), NdFeB(Mg)-600-105 (d), NdFeB(Mg)-550-90 (e) and NdFeB(Mg)-550-120 (f)
Fig.4  TEM image of NdFeB(Mg)-550-105 specimen (a), enlarged images (b, e), element mappings (c, f) and selected-area electron diffraction patterns (d, g) of the regions A and B marked in Fig.4a, respectively
Fig.5  Optical photos of NdFeB (a), NdFeB(Mg)-550-90 (b), NdFeB(Mg)-550-105 (c), NdFeB(Mg)-550-120 (d), NdFeB(Mg)-500-105 (e) and NdFeB(Mg)-600-105 (f) after static full-immersion corrosion tests for different time
Fig.6  Potentiodynamic polarization curves (a) and impedance profiles (b) of NdFeB and various NdFeB(Mg) specimens
SpecimensEcorr / VIcorr / A·cm-2Rs / Ω·cm2Rct / Ω·cm2
NdFeB-0.9146.896 × 10-57.768836
NdFeB(Mg)-500-105-0.8012.342 × 10-57.5656840
NdFeB(Mg)-550-105-0.6841.055 × 10-67.82318335
NdFeB(Mg)-600-105-0.7637.068 × 10-67.86810558
NdFeB(Mg)-550-90-0.7539.661 × 10-67.6588550.8
NdFeB(Mg)-550-120-0.7194.032 × 10-68.00811670
NdFeB(Mg)-550-105-m-0.7682.513 × 10-57.9215254
Table 1  Ecorr, Icorr, Rs and Rct values of NdFeB and various NdFeB(Mg) specimens
Fig.7  Mass gains of NdFeB and NdFeB(Mg) specimens after accelerated ageing test for 500 h
SpecimensMG / mg·cm-2VG / mg·cm-2·h-1
NdFeB0.601.20 × 10-3
NdFeB(Mg)-500-1050.511.02 × 10-3
NdFeB(Mg)-550-1050.340.68 × 10-3
NdFeB(Mg)-600-1050.450.9 × 10-3
NdFeB(Mg)-550-900.440.88 × 10-3
NdFeB(Mg)-550-1200.390.78 × 10-3
Table 2  MG and VG values of NdFeB and various NdFeB(Mg) specimens
Fig.8  XPS total spectra (a) and high resolution spectra of Mg 1s (b) for NdFeB and NdFeB(Mg)-550-105 before and after corrosion
Fig.9  AFM surface potentials of NdFeB (a) and NdFeB(Mg)-550-105 (b)
[1] Junne T, Wulff N, Breyer C, et al. Critical materials in global low-carbon energy scenarios: the case for neodymium, dysprosium, lithium, and cobalt [J]. Energy, 2020, 211: 118532
[2] Coey J M D. Permanent magnet applications [J]. J. Magn. Magn. Mater., 2002, 248: 441
[3] Ni J J, Zhou S T, Jia Z F, et al. Improvement of corrosion resistance in Nd-Fe-B sintered magnets by intergranular additions of Sn [J]. J. Alloy. Compd., 2014, 588: 558
[4] Assis O B G, Sinka V, Ferrante M, et al. Electrochemical aspects of corrosion in sintered and hot-deformed Nd-Fe-B magnets [J]. J. Alloy. Compd., 1995, 218: 263
[5] Liu W Q, Yue M, Zhang D T, et al. Electrochemical corrosion behavior of Nd-Fe-B permanent magnets with modified microstructure [J]. J. Appl. Phys., 2009, 105: 07A709
[6] Liu W Q, Yue M, Zhang J X, et al. Intrinsic corrosion characteristic of sintered NdFeB permanent magnets [J]. Powder Metall. Technol., 2006, 24: 195
(刘卫强, 岳 明, 张久兴 等. 烧结NdFeB永磁合金本征腐蚀特性研究进展 [J]. 粉末冶金技术, 2006, 24: 195)
[7] Li Z J, Wang X E, Li J Y, et al. Effects of Mg nanopowders intergranular addition on the magnetic properties and corrosion resistance of sintered Nd-Fe-B [J]. J. Magn. Magn. Mater., 2017, 442: 62
[8] Cui X G, Yan M, Ma T Y, et al. Effects of Cu nanopowders addition on magnetic properties and corrosion resistance of sintered Nd-Fe-B magnets [J]. Physica, 2008, 403B: 4182
[9] Nakamura H, Hirota K, Shimao M, et al. Magnetic properties of extremely small Nd-Fe-B sintered magnets [J]. IEEE Trans. Magn., 2005, 41: 3844
[10] Zhang P, Ma T Y, Liang L P, et al. Improvement of corrosion resistance of Cu and Nb co-added Nd-Fe-B sintered magnets [J]. Mater. Chem. Phys., 2014, 147: 982
[11] Kim A S, Camp F E, Dulis E J. Effect of oxygen, carbon, and nitrogen contents on the corrosion resistance of Nd-Fe-B magnets [J]. IEEE Trans. Magn., 1990, 26: 1936
[12] Ni J J, Ma T Y, Cui X G, et al. Improvement of corrosion resistance and magnetic properties of Nd-Fe-B sintered magnets by Al85Cu15 intergranular addition [J]. J. Alloy. Compd., 2010, 502: 346
[13] Zhang P, Ma T Y, Liang L P, et al. Improved corrosion resistance of low rare-earth Nd-Fe-B sintered magnets by Nd6Co13Cu grain boundary restructuring [J]. J. Magn. Magn. Mater., 2015, 379: 186
[14] Zhou Q, Liu Z W, Zhong X C, et al. Properties improvement and structural optimization of sintered NdFeB magnets by non-rare earth compound grain boundary diffusion [J]. Mater. Des., 2015, 86: 114
[15] Wang E H, Xiao C H, He J Y, et al. Grain boundary modification and properties enhancement of sintered Nd-Fe-B magnets by ZnO solid diffusion [J]. Appl. Surf. Sci., 2021, 565: 150545
[16] Li M J, Sun X F, Guan H R, et al. High temperature hot-corrosion behavior of (Ni, Pd)Al coating [J]. Acta Metall. Sin., 2004, 40: 773
(李猛进, 孙晓峰, 管恒荣 等. (Ni, Pd)Al涂层的高温热腐蚀 [J]. 金属学报, 2004, 40: 773)
[17] Qu Z J, Wu Q, Zhang M K, et al. Facile preparation of bonded NdFeB/SmFeN hybrid magnets with flexibility, anisotropy and high energy density [J]. J. Magn. Magn. Mater., 2023, 584: 171084
[18] Yates K, West R H. Monochromatized Ag Lα X‐rays as a source for higher energy XPS [J]. Surf. Interf. Anal., 1983, 5: 133
[19] Seyama H, Soma M. X-ray photoelectron spectroscopic study of montmorillonite containing exchangeable divalent cations [J]. J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases, 1984, 80: 237
[20] Wagner C D. Studies of the charging of insulators in ESCA [J]. J. Electron. Spectrosc. Relat. Phenom., 1980, 18: 345
[21] Dai J L, Yang Z X, Liu Q. Rare earth cerium increases the corrosion resistance of NdFeB magnets [J]. Materials, 2020, 13: 4360
[1] YUE Rui, LIU Yongyong, YANG Lijing, ZHU Xinglong, CHEN Quanxin, A Naer, ZHANG Qingke, SONG Zhenlun. Effect of Laser Surface Remelting on Microstructure and Properties of Biodegradable Zn-0.4Mn Alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1127-1134.
[2] ZHOU Qianyong, LAI Yang, LI Qian. Effect of Pickling Process on Corrosion Resistance of Double Cold-reduced Tinplate with Different Tin Coating Masses[J]. 中国腐蚀与防护学报, 2025, 45(4): 939-946.
[3] CHEN Yuqiang, RAN Guanglin, LU Dingding, HUANG Lei, ZENG Liying, LIU Yang, ZHI Qian. Effect of Cyclic Strengthening on Corrosion Behavior of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1051-1060.
[4] LI Mao, DENG Ke, CHEN Yanxiang, LIU Zhonghao, LI Shang, GUO Yuting, DONG Xuanpu, CAO Huatang. Influence of N2 Flow and Target-substrate Distance on Microstructure and Corrosion Resistance Properties of Multi-arc Ion Plated AlSiN Nano-composite Coatings[J]. 中国腐蚀与防护学报, 2025, 45(4): 1041-1050.
[5] ZHANG Xiongbin, DANG En, YU Xiaojing, TANG Yufei, ZHAO Kang. Research Status and Progress on Corrosion Performance of Super Martensitic Stainless Steel for Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[6] ZHAO Lijia, CUI Xinyu, WANG Jiqiang, XIONG Tianying. Corrosion Behavior of Cold-sprayed B4C/Al Composite Coating in Boric Acid Solution[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[7] MA Jinyao, DONG Nan, GUO Zhensen, HAN Peide. Effect of B and Ce Micro-alloying on Secondary Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[8] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[9] WEI Kezheng, JIANG Wenlong, GONG Yiwei, QIU Xin, DING Hanlin, XIANG Chongchen, WANG Zijian. Effect of Aging Time on Precipitation of Second Phase and Corrosion Performance of Prismatic Plane of As-forged AZ80 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1557-1565.
[10] LU Tianai, JIANG Wenhao, WU Wei, ZHANG Junxi. Surface Modification of Corrosion-resistant Cast Iron Based on Functional Requirements of Grounding Materials[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[11] LYU Xiaoming, WANG Zhenyu, HAN En-Hou. Preparation and Corrosion Resistance of Nano-ZrO2 Modified Epoxy Thermal Insulation Coatings[J]. 中国腐蚀与防护学报, 2024, 44(5): 1234-1242.
[12] CHENG Yonghe, FU Junwei, ZHAO Maomi, SHEN Yunjun. Research Progress on Corrosion Resistance of High-entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[13] MA Xiaowei, XUE Rongjie, WANG Taotao, YANG Liang, LIU Zhenguang. Comparison of Corrosion Resistance of Zr-based Amorphous Alloys and Traditional Alloys in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(4): 949-956.
[14] TIAN Mengzhen, WANG Yong, LI Tao, WANG Chuan, GUO Quanzhong, GUO Jianxi. Effect of Electrical Parameters on Energy Consumption and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[15] HE Jiaxuan, ZHANG Yutong, GUAN Xudong, TANG Jianhua, HUANG Hai, ZHAO Xuhui, TANG Yuming, ZUO Yu. Present Status and Progress of Corrosion Protection for Microchannel Heat Exchangers of Al-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
No Suggested Reading articles found!