Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 327-337    DOI: 10.11902/1005.4537.2024.276
Current Issue | Archive | Adv Search |
Research Progress in Composite Protection Technology Against Hydrogen-embrittlement and -corrosion for Hydrogen-blended Natural Gas Pipeline
CUI Bolun1, ZHAO Jie1,2(), LV Ran1, LI Jingfa2, YU Bo2, YAN Donglei3
1.School of Safety Engineering, Beijing Institute of Petrochemical Technology, Beijing 102627, China
2.Hydrogen Energy Research Center, Beijing Institute of Petrochemical Technology, Beijing 102627, China
3.Beijing Jinghui Green Hydrogen New Energy Technology Co., Ltd., Beijing 102400, China
Cite this article: 

CUI Bolun, ZHAO Jie, LV Ran, LI Jingfa, YU Bo, YAN Donglei. Research Progress in Composite Protection Technology Against Hydrogen-embrittlement and -corrosion for Hydrogen-blended Natural Gas Pipeline. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 327-337.

Download:  HTML  PDF(15694KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hydrogen energy, known as an efficient and clean energy source, has significant potential when it is blended with natural gas and transported by the existing pipeline for long distance. This integration not only boosts the utilization of green hydrogen in the energy sector, but also accelerates the country's transition to new energy sources. However, the participation of hydrogen alters the conventional failure patterns of natural gas pipelines, increasing the risks of hydrogen-embrittlement and -corrosion. This paper systematically reviews the latest advancements in composite protection technologies designed to mitigate hydrogen-embrittlement and -corrosion of pipelines. The composite protection technologies for hydrogen-embrittlement and -corrosion of pipelines were summarized, including those related with Ni-containing coatings, Mo-containing coatings, graphene oxide coatings, and metal or metal oxide-organic composite coatings etc., so as the characteristics and development status of every tech. Compared to inorganic coatings, organic composite coatings offer greater versatility, broader applicability, and enhanced dual protection against both hydrogen-permeation and -corrosion. Currently, the electrochemical liquid-phase hydrogen permeation is adopted as the main testing method for hydrogen embrittlement sensitivity of coatings, however which can not faithfully reproduce the high-pressure gaseous hydrogen environments of hydrogen-blended natural gas pipelines. In the future a new hydrogen embrittlement sensitivity test method for coatings may be expected, which should be conducted under conditions of hydrogen permeation induced by combine the coexistence of gas- and liquid-phase hydrogen charging while companied with corrosion. Finally, this review may provide valuable insights for the development of hydrogen permeation-resistant and anti-corrosion composite coating technologies for hydrogen-blended natural gas pipelines.

Key words:  hydrogen-blended natural gas      hydrogen embrittlement      corrosion      composite protection technology      coating     
Received:  30 August 2024      32134.14.1005.4537.2024.276
TE832  
Fund: Science and Technology Project of the State Administration for Market Regulation(2023MK123);National Natural Science Foundation of China(52372311)
Corresponding Authors:  ZHAO Jie, E-mail: zhaojie@bipt.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.276     OR     https://www.jcscp.org/EN/Y2025/V45/I2/327

Fig.1  H-permeation curves (a) and potentiodynamic polarization curves (b) of uncoated, electroplated Ni, and amorphous Ni-P coated steels[11]
Fig.2  Microscopic morphology of corroded coating: (a1-a3) Ni-P-SiO2@Ni, (b1-b3) Ni-P-SiO2[14]
Fig.3  Corrosion schematic diagram of Ni-P coating (a) and Ni-P-Ti3C2T x /MoS2 composite coating (b)[16]
Fig.4  SEM images of the cross-section of low Mo(A) material (a), low Mo(B) material (b), and high Mo material (c)[21]
Fig.5  Comparison of interface charge transfer between Fe(111) and MoS2/Fe(111) thin films adsorbed by H (yellow and blue represent electron accumulation and depletion, respectively)[23]
Fig.6  Hydrogen permeation curves of EP, 5%-EP and 15%-EP[29]
Fig.7  Nyquist plot of coating after soaking in 3.5%NaCl solution after 120 h[29]
Fig.8  SEM morphologies of EP (a1), 0.05CGO (a2), 0.1CGO (a3), 0.25CGO (a4),0.5CGO (a5) and 1CGO (a6) and magnification of SEM morphology of 0.25% (mass fraction) CGO coating (b1, b2)[36]
Fig.9  Schematic diagram of hydrogen permeation[36]
Fig.10  APTES-GO nanosheets alter the permeation pathway of corrosive substances[5]
Fig.11  Cross sectional images of coatings with 30% (a), 40% (b), 50% (c) and 60% (d) filler contents[45]
Fig.12  H2 gas transmission rate (GTR) of PET substrate, EP coated PET and composite coatings coated PET, H2 permeability coefficient values of EP and composite coatings with different filler content (a), schematic diagram of gas permeability machine (b), schematic illustrations of H2 gas molecule permeation process and reduction mechanism of PET, EP coated PET and composite coatings covered PET (c-e)[45]
1 Li C X, Song G, Liu J Y, et al. The development research of hydrogen energy industry based on enterprise perspective [J]. Energy China, 2022, 44(11): 36
李晨曦, 宋 固, 刘佳音 等. 基于企业视角的我国氢能产业发展研究 [J]. 中国能源, 2022, 44(11): 36
2 Wu R, Cao Q, Xiao S, et al. Technology pathway for natural gas pipeline network integration of renewable fuel gas in China [J]. Mod. Chem. Eng., 2024, 44(8): 12
吴 荣, 曹 权, 肖 思 等. 中国天然气管网融合可再生燃气技术路径研究 [J]. 现代化工, 2024, 44(8): 12
3 Wen S F, Xie X D, Zhang Y. Formation of corrosion in natural gas pipelines and anti corrosion protection measures [J]. China Plant Eng., 2024, (10): 178
温少飞, 谢晓东, 张 杨. 天然气管道腐蚀的形成与防腐保护措施 [J]. 中国设备工程, 2024, (10): 178
4 Li F J, Zheng Z Y, Wang X Y, et al. Horizontally aligned BN nanosheet array for nanometer-thick ZrO2 coating with greatly enhanced anticorrosion and hydrogen isotope resistance property [J]. Chem. Eng. J., 2022, 440: 135920
5 Huang K Z. Preparation and hydrogen inhibition mechanism of APTES-GO modified epoxy resin/PVDF organic coating [D]. Beijing: General Research Institute for Nonferrous Metals, 2023
黄科智. APTES-GO改性环氧树脂/PVDF有机涂层的制备及其阻氢机理研究 [D]. 北京: 北京有色金属研究总院, 2023
6 Yuan S C, Li K, Sun Y, et al. Designing functionalized graphene-stitched-SiC/fluoropolymer novel composite coating with excellent corrosion resistance and hydrogen diffusion barrier properties [J]. Chem. Eng. J., 2023, 472: 144881
7 Zheng Z Y, Li H P, Li F J, et al. An efficient PDA/Al2O3 nanosheets reinforced ultra-thin ZrO2 coating with attractive anti-corrosion and deuterium resistance property [J]. Chem. Eng. J., 2022, 450: 138307
8 Li H P, Zheng Z Y, Liu S Q, et al. Thermochemically synthesized α-Al2O3 composite coating with high bonding strength and deuterium permeation resistance [J]. J. Am. Ceram. Soc., 2024, 107: 1871
9 Li F J. Preparation and properties of ZrO2 composite tritium permeation barrier coatings [D]. Wuhan: Huazhong University of Science and Technology, 2023
李芳健. ZrO2复合阻氚涂层的制备及性能研究 [D]. 武汉: 华中科技大学, 2023
10 Wang Z G, Chen W D, Yan S F, et al. Characterization of ZrO2 ceramic coatings on ZrH1.8 prepared in different electrolytes by micro-arc oxidation [J]. Rare Metals, 2022, 41: 1043
11 Samanta S, Singh C, Banerjee A, et al. Development of amorphous Ni-P coating over API X70 steel for hydrogen barrier application [J]. Surf. Coat. Technol., 2020, 403: 126356
12 Huang X M, Xiang X. Effect of SiO2 particle on properties of electroless Ni-P-SiO2 composite coatings [J]. Electroplat. Pollut. Control, 2020, 40(3): 35
黄晓梅, 向 旭. SiO2微粒对化学镀Ni-P-SiO2复合镀层性能的影响 [J]. 电镀与环保, 2020, 40(3): 35
13 Zhu Z F. Preparation of Ni-P-SiO2 nano composite coating by sol-gel method and its properties [D]. Yangzhou: Yangzhou University, 2019
朱智峰. 溶胶-凝胶法制备Ni-P-SiO2纳米复合镀层及其性能研究 [D]. 扬州: 扬州大学, 2019
14 Zhao Z H, Wang S, Cheng M, et al. Novel Nano-core-shell structure SiO2@Ni-reinforced Ni-P-based amorphous composite coating [J]. JOM, 2024, 76: 2166
15 Samanta S, Mondal K, Dutta M, et al. Electroless NiP coatings over API X70 steel: Effect of composition on the H-permeation and corrosion resistance [J]. Surf. Coat. Technol., 2021, 409: 126928
16 Du Y C. Preparation and property research of Ni-P composite coatings doped and modified by micro-nanometer particles [D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering, Chinese Academy of Sciences), 2021
杜英超. 微纳米颗粒掺杂改性Ni-P复合镀层的制备及性能研究 [D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2021
17 Joshi M, Adak B, Butola B S. Polyurethane nanocomposite based gas barrier films, membranes and coatings: A review on synthesis, characterization and potential applications [J]. Prog. Mater. Sci., 2018, 97: 230
18 Cui M J, Ren S M, Zhao H C, et al. Polydopamine coated graphene oxide for anticorrosive reinforcement of water-borne epoxy coating [J]. Chem. Eng. J., 2018, 335: 255
19 Zheng L, Jerrams S, Xu Z C, et al. Enhanced gas barrier properties of graphene oxide/rubber composites with strong interfaces constructed by graphene oxide and sulfur [J]. Chem. Eng. J., 2020, 383: 123100
20 Genchev G, Bosch C, Wanzenberg E, et al. Role of molybdenum in corrosion of iron-based alloys in contact with hydrogen sulfide containing solution [J]. Mater. Corros., 2017, 68: 595
21 Wallaert E, Depover T, De Graeve I, et al. FeS corrosion products formation and hydrogen uptake in a sour environment for quenched & tempered steel [J]. Metals, 2018, 8: 62
22 Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2 [J]. ACS Nano, 2011, 5: 9703
doi: 10.1021/nn203879f pmid: 22087740
23 Li X L, Chen L, Liu H M, et al. Prevention of hydrogen damage using MoS2 coating on iron surface [J]. Nanomaterials, 2019, 9: 382
24 Tomio A, Sagara M, Doi T, et al. Role of alloyed molybdenum on corrosion resistance of austenitic Ni-Cr-Mo-Fe alloys in H2S-Cl- environments [J]. Corros. Sci., 2015, 98: 391
25 Yue X Q, Zhang L, Ma L, et al. Influence of a small velocity variation on the evolution of the corrosion products and corrosion behaviour of super 13Cr SS in a geothermal CO2 containing environment [J]. Corros. Sci., 2021, 178: 108983
26 Wang N, Zhang Y N, Chen J S, et al. Dopamine modified metal-organic frameworks on anti-corrosion properties of waterborne epoxy coatings [J]. Prog. Org. Coat., 2017, 109: 126
27 Lu C Q. Corrosion inhibition mechanism of molybdate [J]. Mater. Prot., 1996, (10): 22
路长青. 钼酸盐的缓蚀机理 [J]. 材料保护, 1996, (10): 22
28 Wang Y, Chai M C, Wang Y Y. Study of the corrosion-inhibiting performance with compound molybdate formulation [J]. Shanghai Chem. Ind., 2003, (7): 23
王 瑛, 柴明成, 王宇友. 钼酸盐与其他缓蚀剂协同缓蚀效应的研究 [J]. 上海化工, 2003, (7): 23
29 Chen X. Study on corrosion performance of molybdate and hexagonal boron nitride doped epoxy coating [D]. Zhenjiang: Jiangsu University of Science and Technology, 2018
陈 曦. 钼酸盐及六方氮化硼掺杂环氧树脂耐蚀性能的研究 [D]. 镇江: 江苏科技大学, 2018
30 Ma L W, Wang X B, Wang J K, et al. Graphene oxide-cerium oxide hybrids for enhancement of mechanical properties and corrosion resistance of epoxy coatings [J]. J. Mater. Sci., 2021, 56: 10108
31 Xie L F, Zhou W L, Zhou B, et al. Exploring salt-mist corrosion resistance of GPTMS functionalized graphene oxide reinforced epoxy resin composite coating on shot-peened Ti-15333 titanium alloy [J]. Surf. Inter., 2024, 44: 103675
32 Tran N A, Jang S, Joo S W. Graphene epoxy spray on 3D-printed acrylonitrile butadiene styrene substrates as O2 gas barrier [J]. Appl. Surf. Sci., 2019, 497: 143745
33 Rajabi M, Rashed G R, Zaarei D. Assessment of graphene oxide/epoxy nanocomposite as corrosion resistance coating on carbon steel [J]. Corros. Eng. Sci. Technol., 2015, 50: 509
34 Yuan S C, Sun Y, Cong C, et al. A bi-layer orientated and functionalized graphene-based composite coating with unique hydrogen gas barrier and long-term anti-corrosion performance [J]. Carbon, 2023, 205: 54
35 Li X Y, Bandyopadhyay P, Nguyen T T, et al. Fabrication of functionalized graphene oxide/maleic anhydride grafted polypropylene composite film with excellent gas barrier and anticorrosion properties [J]. J. Memb. Sci., 2018, 547: 80
36 Wan H X, Cheng Z L, Song D D, et al. Preparation and performance study of waterborne epoxy resin/non-covalent modified graphene oxide hydrogen barrier coatings [J]. Int. J. Hydrog. Energy, 2024, 53: 218
37 Young K T, Smith C, Krentz T M, et al. Graphene synthesized by chemical vapor deposition as a hydrogen isotope permeation barrier [J]. Carbon, 2021, 176: 106
38 Protyai M I H, Bin Rashid A. A comprehensive overview of recent progress in MXene-based polymer composites: Their fabrication processes, advanced applications, and prospects [J]. Heliyon, 2024, 10: e37030
39 Zhou D S, Zhao D L, Sun H F, et al. Two-dimensional material MXene and its derivatives enhance the hydrogen storage properties of MgH2: A review and summary [J]. Int. J. Hydrog. Energy, 2024, 71: 279
40 Dixit F, Zimmermann K, Alamoudi M, et al. Application of MXenes for air purification, gas separation and storage: A review [J]. Renew. Sustain. Energy Rev., 2022, 164: 112527
41 Shi K J, Meng X Y, Xiao S, et al. MXene coatings: novel hydrogen permeation barriers for pipe steels [J]. Nanomaterials, 2021, 11: 2737
42 Xuan X Y, Qu S P, Zhao X Y. Preparation and performance of CeO2@MWCNTs/EP composite coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 992
轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 992
doi: 10.11902/1005.4537.2022.307
43 Sayed M, Kamal El-Dean A M, Ahmed M, et al. Design, synthesis, and characterization of novel pyrimidines bearing indole as antimicrobial agents [J]. J. Chin. Chem. Soc., 2019, 66: 218
44 Guergova D, Stoyanova E, Stoychev D, et al. Self-healing effect of ceria electrodeposited thin films on stainless steel in aggressive 0.5 mol/L NaCl aqueous solution [J]. J. Rare Earths, 2015, 33: 1212
45 Yuan S C, Sun Y, Yang C S, et al. A novel dual-functional epoxy-based composite coating with exceptional anti-corrosion and enhanced hydrogen gas barrier properties [J]. Chem. Eng. J., 2022, 449: 137876
46 Yang X, Gao Z M, Wang X Y, et al. Influence of fusion bonded epoxy powder on Corrosion, wear performance of galvanized composite coating and hydrogen permeation behavior to based carbon steel [J]. Mater. Lett., 2021, 296: 129922
47 Xu M, Wang T J, Chang X L, et al. Study on gas phase hydrogen permeation and hydrogen damage behavior of X80 pipeline steel [J]. Mech. Eng., 2024. DOI: 10.6052/1000-0879-24-248
徐 猛, 王铁军, 常雪伦 等. X80管线钢气相氢渗透及氢损伤行为研究 [J]. 力学与实践, 2024. DOI: 10.6052/1000-0879-24-248
48 Li Y X, Zhang R, Liu C W, et al. Hydrogen embrittlement behavior of typical hydrogen-blended natural gas pipeline steel [J]. Oil Gas Storage Transp., 2022, 41: 732
李玉星, 张 睿, 刘翠伟 等. 掺氢天然气管道典型管线钢氢脆行为 [J]. 油气储运, 2022, 41: 732
49 Zhang H W, Zhao J, Li J F, et al. Research progress on corrosion and hydrogen embrittlement in hydrogen-natural gas pipeline transportation [J]. Nat. Gas Ind., 2023, 43(6): 126
张烘玮, 赵 杰, 李敬法 等. 天然气掺氢输送环境下的腐蚀与氢脆研究进展 [J]. 天然气工业, 2023, 43(6): 126
[1] WANG Mingyang, XIA Da-Hai. Research Progress on Hydrogen Embrittlement Mechanism of High Strength Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(2): 261-270.
[2] BAI Zhengqing, NONG Jing, WEI Shichen, XU Jian. Effect of Pre-charging Hydrogen on Corrosion Behavior of Ni-Cr Alloy in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2025, 45(2): 338-346.
[3] ZHANG Qianru, SUN Qingqing. Hydrogen Enhanced Localized Plasticity: A Critical Review[J]. 中国腐蚀与防护学报, 2025, 45(2): 271-282.
[4] WAN Hongjiang, MING Hongliang, WANG Jianqiu, HAN En-Hou. Effect of Small Amount of O2 and CO on Hydrogen Embrittlement Susceptibility of X52 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 371-380.
[5] CHENG Kaiyuan, PENG Yang, HUANG Feng, CHENG Xianglong, XU Yunfeng, PENG Zhixian, LIU Jing. Adaptability of Typical Seamless Tube Steels to Hydrogen-blended Natural Gas Environments and Hydrogen- induced Damage Mechanism[J]. 中国腐蚀与防护学报, 2025, 45(2): 397-406.
[6] CUI Dechun, XIONG Liang, YU Bangting, WU Haozhi, DONG Shaohua, CHEN Lin. Finite Element Analysis of Local Hydrogen Concentration in Hydrogen Pipeline With Corrosion Defects[J]. 中国腐蚀与防护学报, 2025, 45(2): 359-370.
[7] YANG Zhenyu, JI Chao, GUO Liya, XU Run, PENG Wei, ZHAO Hongshan, WEI Xicheng, DONG Han. Initial Corrosion Behavior of Several Pure Irons and Steels in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(2): 469-478.
[8] TANG Yixin, ZHANG Fei, CUI Zhongyu, CUI Hongzhi, LI Yizhou. Effect of Hydrogen on Crevice Corrosion Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(2): 431-437.
[9] YAN Bingchuan, ZENG Yunpeng, ZHANG Ning, SHI Xianbo, YAN Wei. Microbiologically Influenced Corrosion of Cu-bearing Steel Welded Joints for Petroleum Pipes[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[10] ZHAO Jie, XU Guangxu, ZHANG Hongwei, LI Jingfa, LV Ran, WANG Jialong, YAN Donglei. Coupling Effect of Hydrogen Embrittlement and Corrosion of X80 Pipeline Steel in Hydrogen-doped Natural Gas[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[11] LIU Tianle, WEI Boxin, FU Anqing, SU Hang, CHEN Tingshu, WANG Chaoming, WANG Sui. Hydrogen Damage of X80 Pipeline Steel in Hydrogen-doped Gaseous Atmosphere[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[12] MIAO Hao, YIN Chenghui, WANG Honglun, GAO Yihui, CHEN Junhang, ZHANG Hao, LI Bo, WU Junsheng, XIAO Kui. Correlation of Laboratory Simulation Test and Field Exposure Test for Three Stainless Steels in Polluted Marine Atmosphere of Qingdao Coastal Area[J]. 中国腐蚀与防护学报, 2025, 45(2): 449-459.
[13] JIANG Huifang, LIU Yanghao, LIU Ying, LI Yingchao, YU Haobo, ZHAO Bo, CHEN Xi. Mechanism of Microbial Corrosion of J55 Steel in Hydrogen-containing Environments in Underground Hydrogen Storage Facilities[J]. 中国腐蚀与防护学报, 2025, 45(2): 347-358.
[14] ZHANG Huiyun, ZHENG Liuwei, LIANG Wei. Effect of Annealing Process on Microstructure Evolution and Hydrogen Embrittlement Behavior of 304 Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[15] CHEN Kai, DU Yifan, XU Haoyun, LV Liang, DANG Guiming, WANG Yujin, ZHENG Shuqi. Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
No Suggested Reading articles found!