Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 347-358    DOI: 10.11902/1005.4537.2024.281
Current Issue | Archive | Adv Search |
Mechanism of Microbial Corrosion of J55 Steel in Hydrogen-containing Environments in Underground Hydrogen Storage Facilities
JIANG Huifang1, LIU Yanghao1, LIU Ying1, LI Yingchao1(), YU Haobo1, ZHAO Bo2, CHEN Xi3
1.College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102224, China
2.China Special Equipment Inspection and Research Institute, Beijing 100029, China
3.China Petroleum International Co., Ltd., Beijing 100027, China
Cite this article: 

JIANG Huifang, LIU Yanghao, LIU Ying, LI Yingchao, YU Haobo, ZHAO Bo, CHEN Xi. Mechanism of Microbial Corrosion of J55 Steel in Hydrogen-containing Environments in Underground Hydrogen Storage Facilities. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 347-358.

Download:  HTML  PDF(27847KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Underground hydrogen storage (UHS) has emerged as the optimal solution for large-scale hydrogen storage. In such case, however there is a risk of hydrogen leakage, which, in combination with factors like microorganisms and stress loads present in the underground environment, poses a threat to hydrogen-exposed metallic materials. Hence, the corrosion behavior of J55 steel in a simulated environment of hydrogen leakage in storage facilities with trace hydrogen (0.01%-1%) coupled with sulfate-reducing bacteria (SRB) and the presence stress was assessed via four-point bending method. The results indicate that SRB accelerates the anodic reaction and the corrosion of J55 steel, leading to significant pitting on the steel surface. Moreover, the presence of stress causes stress concentration on the surface of J55 steel, enhancing the localized corrosion induced by SRB, and promoting the development and growth of cracks associated with pit accumulation. When stress, SRB, and hydrogen coexist, an increase in hydrogen concentration in the system (0%, 0.22%, 0.44%) leads to a significant increase in the maximum pitting depth of J55 steel, exacerbating its corrosion. SRB can utilize electrons provided by H2 to produce corrosive byproducts such as H2S. The presence of hydrogen further facilitates crack propagation and pit formation.

Key words:  hydrogen gas      sulfate-decuing bacteria      microbiologically influenced corrosion      underground hydrogen storgae     
Received:  31 August 2024      32134.14.1005.4537.2024.281
TG174  
Fund: National Natural Science Foundation of China(51801232);National Market Supervision Administration Science and Technology Innovation Talent Program, Top-Young Talent(QNBJ202316);Science and Technology Program of the State Administration for Market Regulation(2023MK200)
Corresponding Authors:  LI Yingchao, E-mail: liyc@cup.com.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.281     OR     https://www.jcscp.org/EN/Y2025/V45/I2/347

Fig.1  Schematic diagram of the specimen and equipment for the dimensions: (a) J55 U-bend specimen before bending, (b) dimensions of the J55 U-bend specimen after bending, (c) electrochemical reaction cell containing the electrodes of the J55 square specimen (1 cm2) with the Pt counter electrode and the Ag/AgCl electrode immersed in a common medium, (d) electrochemical cell containing the electrodes of the J55 U-bend specimen (1 cm2) of the same
Fig.2  Number of sessile cells on the surfaces of J55 steel square and U-shaped bend specimen after 7 d of cultication under different hydrogen gas concentration conditions
Fig.3  Surface corrosion morphologies (a1-e1, a2-e2) and EDS analysis (a3-e3) conditions for sterile with square specimen (a1), sterile with U-bend specimen (a2), bacteria with square specimen (b), bacteria with U-bend specimen (c), bacteria with U-bend specimen + 0.22%H2 (d) and bacteria with U-bend specimen + 0.44%H2 (e) after 7 d
Fig.4  Surface corrosion morphology for square specimen (a) and U-shaped bending specimen (b) after 7 d
Fig.5  Surface corrosion morphology for bacteria with square specimen (a1), bacteria with U-bend specimen (a2), bacteria with U-bend specimen + 0.22%H2 surface corrosion pattern and its enlarged image (b) and bacteria with U-bend specimen + 0.44%H2 surface corrosion pattern and its enlarged image (c) after 7 d
Fig.6  2D projection image of the largest pitting pit for bacteria with square specimen (a), bacteria with U-bend specimen (b), bacteria with U-bend specimen + 0.22%H2 (c) and bacteria with U-bend specimen + 0.44%H2 (d) after 7 d
Fig.7  Distribution scatterplot for depth distribution scatterplot (a), width distribution scatterplot (b) and overall distribution scatter plot (c) after 7 d
Fig.8  Nyquist (a1-f1) and Bode (a2-f2) diagrams of sterile with square specimen (a), sterile with U-bend specimen (b), bacteria with square specimen (c), bacteria with U-bend specimen (d), bacteria with U-bend specimen + 0.22%H2 (e) and bacteria with U-bend specimen + 0.44%H2 (f) and equivalent circuits used to fit and aseptic condition EIS data (g), Equivalent circuits for fitting EIS data under bacteria condition (h)
Fig.9  Tafel curves of J55 steel specimens incubated for 7 d under different conditions
Experimental conditionIcorr / A·cm-2Ecorr (V) vs. Ag/AgClβa / V·dec-1βc / V·dec-1
Sterile + square specimen9.06 × 10-7-0.7070.105-0.111
Sterile + U-bend specimen1.73 × 10-6-0.6850.063-0.141
SRB + square specimen1.43 × 10-5-0.6230.073-0.041
SRB + U-bend specimen8.05 × 10-5-0.7550.409-0.032
SRB + U-bend specimen + 0.22%H28.18 × 10-5-0.8250.635-0.011
SRB + U-bend specimen + 0.44%H22.32 × 10-4-0.7590.617-0.018
Table 1  Electrochemical parameters for Tafel curve fitting of U-bend and square specimens of J55 steel incubated for 7 d under different conditions
Fig.10  SEM images of square and U-bend specimen cross sections after 7 d of incubation under different conditions in a bacterial environment: (a) sterile with square specimen, (b) sterile with U-bend specimen, (c) bacteria with square specimen, (d) bacteria with U-bend specimen,(e) bacteria with U-bend specimen + 0.22%H2, (f) bacteria with U-bend specimen + 0.44%H2
Fig.11  Schematic diagram of the interaction mechanism of SRB, stress and hydrogen gas on the corrosion of J55 steel
1 Liu C W, Hong W M, Wang D C, et al. Research progress of underground hydrogen storage technology [J]. Oil Gas Storage Transp., 2023, 42: 841
刘翠伟, 洪伟民, 王多才 等. 地下储氢技术研究进展 [J]. 油气储运, 2023, 42: 841
2 Epelle E I, Obande W, Udourioh G A, et al. Perspectives and prospects of underground hydrogen storage and natural hydrogen [J]. Sustain. Energy Fuels, 2022, 6: 3324
3 Kalam S, Abu-Khamsin S A, Kamal M S, et al. A mini-review on underground hydrogen storage: production to field studies [J]. Energy Fuels, 2023, 37: 8128
4 Pan S Q, Zou C N, Wang H Z, et al. Development status of underground hydrogen storages and top ten technical challenges to efficient construction of gas reservoir-type underground hydrogen storages [J]. Nat. Gas Ind., 2023, 43(11): 164
潘松圻, 邹才能, 王杭州 等. 地下储氢库发展现状及气藏型储氢库高效建库十大技术挑战 [J]. 天然气工业, 2023, 43(11): 164
5 Thiyagarajan S R, Emadi H, Hussain A, et al. A comprehensive review of the mechanisms and efficiency of underground hydrogen storage [J]. J. Energy Storage, 2022, 51: 104490
6 Tarkowski R, Uliasz-Misiak B. Towards underground hydrogen storage: a review of barriers [J]. Renew. Sustain. Energy Rev., 2022, 162: 112451
7 Berta M, Dethlefsen F, Ebert M, et al. Geochemical effects of millimolar hydrogen concentrations in groundwater: an experimental study in the context of subsurface hydrogen storage [J]. Environ. Sci. Technol., 2018, 52: 4937
8 Javaherdashti R. Editorial: microbiologically influenced corrosion (MIC): its mechanisms, technological, economic, and environmental impacts [J]. Front. Microbiol., 2023, 14: 1249565
9 Dopffel N, Jansen S, Gerritse J. Microbial side effects of underground hydrogen storage-knowledge gaps, risks and opportunities for successful implementation [J]. Int. J. Hydrog. Energy, 2021, 46: 8594
10 Li Y C, Feng S Q, Liu H M, et al. Bacterial distribution in SRB biofilm affects MIC pitting of carbon steel studied using FIB-SEM [J]. Corros. Sci., 2020, 167: 108512
11 Ugarte E R, Salehi S. A review on well integrity issues for underground hydrogen storage [J]. J. Energy Resour. Technol., 2022, 144: 042001
12 Zivar D, Kumar S, Foroozesh J. Underground hydrogen storage: a comprehensive review [J]. Int. J. Hydrog. Energy, 2021, 46: 23436
13 Zhu Y Y, Huang Y L, Huang S D, et al. Hydrogen permeation of 16Mn steel in sea mud with sulfate reducing bacteria [J]. Corros. Sci. Prot. Technol., 2008, 20: 118
朱永艳, 黄彦良, 黄偲迪 等. 16Mn钢在海泥中的氢渗透行为研究 [J]. 腐蚀科学与防护技术, 2008, 20: 118
14 Li Y C, Xu D K, Chen C F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review [J]. J. Mater. Sci. Technol., 2018, 34: 1713
doi: 10.1016/j.jmst.2018.02.023
15 Pichler M. Underground sun storage results and outlook [A]. EAGE/DGMK Joint Workshop on Underground Storage of Hydrogen [C]. Hamburg, 2019: 1
16 Papadias D D, Ahluwalia R K. Bulk storage of hydrogen [J]. Int. J. Hydrog. Energy, 2021, 46: 34527
17 Wu M, Gong K, Xie F. Effect of sulfate reducing bacteria and stress on corrosion behavior of X100 steel in sea mud environment [J]. J. Electroanal. Chem., 2021, 886: 115129
18 Li Z, Yang J K, Lu S H, et al. X80 U-bend stress corrosion cracking (SCC) crack tip dissolution by fast corroding Desulfovibrio ferrophilus IS5 biofilm [J]. Process Saf. Environ. Prot., 2023, 178: 56
19 Pu Y N, Chen S G, Man C, et al. Investigation on the stress corrosion cracking behavior and mechanism of 90/10 copper-nickel alloy under the cooperative effect of tensile stress and Desulfovibrio vulgaris [J]. Corros. Sci., 2023, 225: 111617
20 Wu T Q, Zhou Z F, Wang X M, et al. Thermodynamic and dynamic analyses of microbiologically assisted cracking [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 227
吴堂清, 周昭芬, 王鑫铭 等. 微生物致裂的热力学和动力学分析 [J]. 中国腐蚀与防护学报, 2019, 39: 227
doi: 10.11902/1005.4537.2018.068
21 Sun D X, Wang D N, Li L, et al. Study on stress corrosion behavior and mechanism of X70 pipeline steel with the combined action of sulfate-reducing bacteria and constant load [J]. Corros. Sci., 2023, 213: 110968
22 Liu Z Y, Li Z S, Zhan X L, et al. Growth behavior and mechanism of stress corrosion cracks of X80 pipeline steel in simulated Yingtan soil solution [J]. Acta Metall. Sin., 2016, 52: 965
doi: 10.11900/0412.1961.2015.00548
刘智勇, 李宗书, 湛小琳 等. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理 [J]. 金属学报, 2016, 52: 965
doi: 10.11900/0412.1961.2015.00548
23 Wu T Q, Ding W C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (Ⅰ) electrochemical analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 346
吴堂清, 丁万成, 曾德春 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (Ⅰ)电化学分析 [J]. 中国腐蚀与防护学报, 2014, 34: 346
doi: 10.11902/1005.4537.2014.044
24 Li J Y, Zeng T H, Liu Y T, et al. Corrosion behavior of 4Cr16Mo martensite stainless steel with 1% Cu addition by applied stress [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1094
李佳媛, 曾天昊, 刘友通 等. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1094
doi: 10.11902/1005.4537.2023.132
25 Yang X J, Shao J M, Liu Z Y, et al. Stress-assisted microbiologically influenced corrosion mechanism of 2205 duplex stainless steel caused by sulfate-reducing bacteria [J]. Corros. Sci., 2020, 173: 108746
26 Wu T Q, Yan M C, Yu L B, et al. Stress corrosion of pipeline steel under disbonded coating in a SRB-containing environment [J]. Corros. Sci., 2019, 157: 518
27 Wu T Q, Zhou Z F, Wang X M, et al. Bacteria assisted cracking of X80 pipeline steel under the actions of elastic and plastic stresses [J]. Surf. Technol., 2019, 48(7): 285
吴堂清, 周昭芬, 王鑫铭 等. 弹塑性应力作用下X80管线钢的菌致开裂行为 [J]. 表面技术, 2019, 48(7): 285
28 Yu D Y, Liu Z Y, Du C W, et al. Research progress and prospect of stress corrosion cracking of pipeline steel in soil environments [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 737
余德远, 刘智勇, 杜翠薇 等. 管线钢土壤应力腐蚀开裂研究进展及展望 [J]. 中国腐蚀与防护学报, 2021, 41: 737
doi: 10.11902/1005.4537.2020.211
29 Guo H H, Zhong R, Liu B, et al. Characteristic and mechanistic investigation of stress-assisted microbiologically influenced corrosion of X80 steel in near-neutral solutions [J]. Materials (Basel), 2023, 16: 390
30 Gu T Y, Jia R, Unsal T, et al. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35: 631
doi: 10.1016/j.jmst.2018.10.026
31 Amirthan T, Perera M S A. Underground hydrogen storage in Australia: a review on the feasibility of geological sites [J]. Int. J. Hydrog. Energy, 2023, 48: 4300
[1] YAN Bingchuan, ZENG Yunpeng, ZHANG Ning, SHI Xianbo, YAN Wei. Microbiologically Influenced Corrosion of Cu-bearing Steel Welded Joints for Petroleum Pipes[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[2] WANG Yali, GUAN Fang, DUAN Jizhou, ZHANG Lina, YANG Zhengxian, HOU Baorong. Synergistic Inhibition of Rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on Microbiologically Influenced Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[3] KE Nan, NI Yingying, HE Jiaqi, LIU Haixian, JIN Zhengyu, LIU Hongwei. Research Progress of Metal Corrosion Caused by Extracellular Polymeric Substances of Microorganisms[J]. 中国腐蚀与防护学报, 2024, 44(2): 278-294.
[4] PEI Yingying, GUAN Fang, DONG Xucheng, ZHANG Ruiyong, DUAN Jizhou, HOU Baorong. Effect of Desulfovibrio Bizertensis SY-1 on Corrosive Behavior of Metal Materials Under Cathodic Polarization[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
[5] WU Jiajia, XU Ming, WANG Peng, ZHANG Dun. Impact of Nitrate Addition on EH40 Steel Corrosion in Natural Seawater[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[6] LI Zhenxin, LV Meiying, DU Min. Effect of Combined Potential Polarization on Corrosion of X65 Steel in Seawater Inoculated with Iron Oxiding Bacteria[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.
[7] HE Yongjun, ZHANG Tiansui, WANG Haitao, ZHANG Fei, LI Guangfang, LIU Hongfang. Research Progress of Biocides for Microbiologically Influenced Corrosion[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[8] LV Meiying, LI Zhenxin, DU Min, WAN Zixuan. Effect of Culture Medium on Microbiologically Influenced Corrosion[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
[9] ZHANG Fei, WANG Haitao, HE Yongjun, ZHANG Tiansui, LIU Hongfang. Case Analysis of Microbial Corrosion in Product Oil Pipeline[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[10] LI Guangquan, LI Guangfang, WANG Junqiang, ZHANG Tiansui, ZHANG Fei, JIANG Ximin, LIU Hongfang. Microbiologically Influenced Corrosion Mechanism and Protection of Offshore Pipelines[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[11] MA Gang, GU Yanhong, ZHAO Jie. Research Progress on Sulfate-reducing Bacteria Induced Corrosion of Steels[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[12] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[13] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[14] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[15] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
No Suggested Reading articles found!