Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 261-270    DOI: 10.11902/1005.4537.2024.238
Current Issue | Archive | Adv Search |
Research Progress on Hydrogen Embrittlement Mechanism of High Strength Al-alloy
WANG Mingyang, XIA Da-Hai()
School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
Cite this article: 

WANG Mingyang, XIA Da-Hai. Research Progress on Hydrogen Embrittlement Mechanism of High Strength Al-alloy. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 261-270.

Download:  HTML  PDF(10438KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hydrogen embrittlement is one of the problems when the high strength Al-alloy is applied in hydrogen related service environments. This paper first summarizes the sources of hydrogen and its role in high-strength Al-alloys, along with the main mechanisms of hydrogen embrittlement: hydrogen enhanced localized plasticity (HELP), hydrogen enhanced decohesion (HEDE), and adsorption induced dislocation emission (AIDE). The effects of microstructure (such as second phase, dislocation, and grain boundary) and environmental factors (including temperature, humidity, and strain rate) on the hydrogen embrittlement sensitivity of high-strength Al-alloy are analyzed and discussed. It is highlighted that the synergistic interactions of hydrogen and second phase with cracks during the hydrogen embrittlement process, as well as the coupling effects of various environmental factors on the hydrogen embrittlement sensitivity of high-strength aluminum alloys, are urgent issues that need to be addressed. Finally, it is worthy to point out that regulating the structure and number of irreversible hydrogen traps is one of the effective strategies to mitigate hydrogen embrittlement.

Key words:  high strength Al-alloy      hydrogen embrittlement      hydrogen trapping      first-principles calculation     
Received:  31 July 2024      32134.14.1005.4537.2024.238
TG172  
Fund: National Natural Science Foundation of China(52031007);National Natural Science Foundation of China(52171077)
Corresponding Authors:  XIA Da-Hai, E-mail: dahaixia@tju.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.238     OR     https://www.jcscp.org/EN/Y2025/V45/I2/261

Fig.1  Schematic illustrations of sites and traps for hydrogen in metals[30]
Fig.2  Schematic diagrams illustrating hybrid mechanisms of hydrogen-assisted cracking: (a) AIDE with contributions from HELP and HEDE, (b) AIDE alternating with HEDE[39]
Fig.3  Hydrogen embrittlement fracture of high-strength martensite at 550 oC (a), 650 oC (b) and 290 oC (c) tempering temperatures[43]
Fig.4  Hydrogen embrittlement fracture of high strength aluminum alloy with 350 oC (a), 410 oC (b), 490 oC (c), 550 oC (d) homogenization temperatures[42]
Fig.5  Stress-strain curves and fracture cross-sections of samples in different aging states[47]: (a) stress-strain curves, (b) under aging, (c) peak aging, (d) over aging
Fig.6  Effect of solid solution temperature on atomic segregation (a), elongation (b) and fracture pattern (c)[48]
Fig.7  Test results of Al-Cu alloy under different heat treatment conditions[49]: (a) thermal desorption curve of hydrogen, (b) XRD, (c) stress-strain curve of SSRT
Fig.8  Hydrogen embrittlement sensitivity of Al-Zn alloy under different humidity[52]: (a) stress-strain curve of SSRT, (b) hydrogen embrittlement sensitivity factor
1 Campestrini P, van Westing E P M, van Rooijen H W, et al. Relation between microstructural aspects of AA2024 and its corrosion behaviour investigated using AFM scanning potential technique [J]. Corros. Sci., 2000, 42: 1853
2 Hirsch J. Recent development in aluminium for automotive applications [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1995
3 Li Y Y, Wang Q, Zhang H W, et al. Role of solute atoms and vacancy in hydrogen embrittlement mechanism of aluminum: a first-principles study [J]. Int. J. Hydrog. Energy, 2023, 48: 4516
4 Dwivedi S K, Vishwakarma M. Hydrogen embrittlement in different materials: a review [J]. Int. J. Hydrog. Energy, 2018, 43: 21603
5 Breen A J, Stephenson L T, Sun B H, et al. Solute hydrogen and deuterium observed at the near atomic scale in high-strength steel [J]. Acta Mater., 2020, 188: 108
6 Weng S, Meng C, Zhu J F, et al. Effect of fatigue damage under stress-controlled mode on the corrosion behavior of AA7075-T651 al-alloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1029
翁 硕, 孟 超, 朱江峰 等. 应力控制模式下疲劳损伤对AA7075-T651铝合金腐蚀行为影响的研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1029
7 Chen J F, Zhang X F, Zou L C, et al. Effect of precipitate state on the stress corrosion behavior of 7050 aluminum alloy [J]. Mater. Charact., 2016, 114: 1
8 Zhang M H, Liu S D, Jiang J Y, et al. Effect of Cu content on intergranular corrosion and exfoliation corrosion susceptibility of Al-Zn-Mg-(Cu) alloys [J]. Trans. Nonferrous Met. Soc. China, 2023, 33: 1963
9 Chen S Y, Li J Y, Hu G Y, et al. Effect of Zn/Mg ratios on SCC, electrochemical corrosion properties and microstructure of Al-Zn-Mg alloy [J]. J. Alloy. Compd., 2018, 757: 259
10 Liu L, Cui X Y, Jiang J T, et al. Segregation of the major alloying elements to Al3(Sc, Zr) precipitates in an Al-Zn-Mg-Cu-Sc-Zr alloy [J]. Mater. Charact., 2019, 157: 109898
11 Xia P, Wang S C, Huang H L, et al. Effect of Sc and Zr additions on recrystallization behavior and intergranular corrosion resistance of Al-Zn-Mg-Cu alloys [J]. Materials, 2021, 14: 5516
12 Alexopoulos N D, Velonaki Z, Stergiou C I, et al. The effect of artificial ageing heat treatments on the corrosion-induced hydrogen embrittlement of 2024 (Al-Cu) aluminium alloy [J]. Corros. Sci., 2016, 102: 413
13 Song Y F, Ding X F, Xiao L R, et al. Effects of two-stage aging on the dimensional stability of Al-Cu-Mg alloy [J]. J. Alloy. Compd., 2017, 701: 508
14 Xu X H, Deng Y L, Pan Q L, et al. Enhancing the intergranular corrosion resistance of the Al-Mg-Si alloy with low Zn content by the interrupted aging treatment [J]. Metall. Mater. Trans., 2021, 52A: 4907
15 Han N M, Zhang X M, Liu S D, et al. Effects of retrogression and reaging on strength and fracture toughness of aluminum alloy 7050 [J]. Chin. J. Nonferrous Met., 2012, 22: 1871
韩念梅, 张新明, 刘胜胆 等. 回归再时效对7050铝合金强度和断裂韧性的影响 [J]. 中国有色金属学报, 2012, 22: 1871
16 Huang I W, Hurley B L, Yang F, et al. Dependence on temperature, pH, and Cl- in the uniform corrosion of aluminum alloys 2024-T3, 6061-T6, and 7075-T6 [J]. Electrochim. Acta, 2016, 199: 242
17 Song R G, Dietzel W, Zhang B J, et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2004, 52: 4727
18 Safyari M, Mori G, Ucsnik S, et al. Mechanisms of hydrogen absorption, trapping and release during galvanostatic anodization of high-strength aluminum alloys [J]. J. Mater. Res. Technol., 2023, 22: 80
19 Peng H, Cheng X Y, Li X L, et al. Effect of V and Nb on hydrogen traps in high strength low alloy steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 415
彭 浩, 程晓英, 李晓亮 等. 高强度低合金钢中V和Nb对氢陷阱的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 415
20 Johnson W H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids [J]. Proc. Roy. Soc. London, 1875, 23: 168
21 Negi A, Elkhodbia M, Barsoum I, et al. Coupled analysis of hydrogen diffusion, deformation, and fracture: a review [J]. Int. J. Hydrog. Energy, 2024, 82: 281
22 Wang Y F, Li Y Z, Huang Y T, et al. Effect of grain size on hydrogen embrittlement of 304L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 494
王艳飞, 李耀州, 黄玉婷 等. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 494
doi: 10.11902/1005.4537.2022.238
23 Śmiałowski M. Hydrogen in Steel [J]. New York: Pergamon Press, 1962
24 Chu W Y. Hydrogen Damage and Delayed Fracture [M]. Beijing: Metallurgical Industry Press, 1988
褚武扬. 氢损伤和滞后断裂 [M]. 北京: 冶金工业出版社, 1988
25 Fan Z B, Gao Z Y, Zong L J, et al. Corrosion behaviour and characteristics of 1050A Al-alloy exposed in typical atmospheres of Shandong Province [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1055
樊志彬, 高智悦, 宗立君 等. 1050A铝合金在山东不同典型环境中的大气腐蚀行为特征研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1055
doi: 10.11902/1005.4537.2023.321
26 Hirata K, Iikubo S, Koyama M, et al. First-principles study on hydrogen diffusivity in BCC, FCC, and HCP iron [J]. Metall. Mater. Trans., 2018, 49A: 5015
27 Hagi H, Hayashi Y. Effect of dislocation trapping on hydrogen and deuterium diffusion in iron [J]. Trans. Japan Inst. Met., 1987, 28: 368
28 Chu W Y, Qiao L J, Li J X, et al. Typical Systems of Hydrogen Embrittlement and Stress Corrosio [M]. Beijing: Science Press, 2013
褚武扬, 乔利杰, 李金许 等. 氢脆和应力腐蚀-典型体系 [M]. 北京: 科学出版社, 2013
29 Zhou X, Wu D K, Cheng X, et al. Research progress of detection techniques for permeated hydrogen [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1203
周 欣, 吴大康, 成 旭 等. 渗透氢检测方法研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1203
30 Pundt A, Kirchheim R. Hydrogen in metals: microstructural aspects [J]. Annu. Rev. Mater. Res., 2006, 36: 555
31 Pfeil L B. The effect of occluded hydrogen on the tensile strength of iron [J]. Proc. Roy. Soc., 1926, 112A: 182
32 Troiano A R. The role of hydrogen and other interstitials in the mechanical behavior of metals: (1959 edward de mille campbell memorial lecture) [J]. Metall. Microstruct. Anal., 2016, 5: 557
33 Oriani R A. A mechanistic theory of hydrogen embrittlement of steels [J]. Ber. Bunsenges. Phys. Chem., 1972, 76: 848
34 Zhao H, Chakraborty P, Ponge D, et al. Hydrogen trapping and embrittlement in high-strength Al alloys [J]. Nature, 2022, 602: 437
35 Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) [J]. Metall. Trans., 1972, 3: 441
36 Birnbaum H K, Sofronis P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture [J]. Mater. Sci. Eng., 1994, 176A: 191
37 Sofronis P, Birnbaum H K. Hydrogen enhanced localized plasticity: a mechanism for hydrogen related fracture [A]. Proceedings of the 1993 ASME Winter Annual Meeting [C]. New Orleans, 1993
38 Lu G, Zhang Q, Kioussis N, et al. Hydrogen-enhanced local plasticity in aluminum: an ab initio study [J]. Phys. Rev. Lett., 2001, 87: 095501
39 Lynch S P. Mechanisms of hydrogen-assisted cracking [J]. Met. Forum, 1979, 2: 189
40 Daw M S, Baskes M I. Application of the embedded atom method to hydrogen embrittlement [A]. LatanisionRM, JonesRH. Chemistry and Physics of Fracture [M]. Dordrecht: Springer, 1987: 196
41 Lu G, Zhang Q, Kioussis N, et al. Hydrogen-enhanced local plasticity in aluminum: an ab initio study [J]. Phys. Rev. Lett., 2001, 87: 095501
42 Safyari M, Khossossi N, Meisel T, et al. New insights into hydrogen trapping and embrittlement in high strength aluminum alloys [J]. Corros. Sci., 2023, 223: 111453
43 Lynch S P. Environmentally assisted cracking: overview of evidence for an adsorption-induced localised-slip process [J]. Acta Metall., 1988, 36: 2639
44 Yamaguchi M, Tsuru T, Ebihara K I, et al. Hydrogen trapping in Mg2Si and Al7FeCu2 intermetallic compounds in aluminum alloy: first-principles calculations [J]. Mater. Trans., 2020, 61: 1907
45 Ji Y C, Dong C F, Wei X, et al. Discontinuous model combined with an atomic mechanism simulates the precipitated η′ phase effect in intergranular cracking of 7-series aluminum alloys [J]. Comp. Mater. Sci., 2019, 166: 282
46 Tsuru T, Yamaguchi M, Ebihara K, et al. First-principles study of hydrogen segregation at the MgZn2 precipitate in Al-Mg-Zn alloys [J]. Comp. Mater. Sci., 2018, 148: 301
47 Chen M Y, Liu S D, He K Z, et al. Hydrogen-induced failure in a partially-recrystallized Al-Zn-Mg-Cu alloy with different aging conditions: influence of deformation behavior dominated by microstructures [J]. Mater. Des., 2023, 233: 112199
48 Moshtaghi M, Safyari M, Hojo T. Effect of solution treatment temperature on grain boundary composition and environmental hydrogen embrittlement of an Al-Zn-Mg-Cu alloy [J]. Vacuum, 2021, 184: 109937
49 Safyari M, Moshtaghi M, Kuramoto S, et al. Influence of microstructure-driven hydrogen distribution on environmental hydrogen embrittlement of an Al-Cu-Mg alloy [J]. Int. J. Hydrog. Energy, 2021, 46: 37502
50 De Francisco U, Larrosa N O, Peel M J. The influence of temperature on hydrogen environmentally assisted cracking of AA7449-T7651 in moist air [J]. Corros. Sci., 2021, 180: 109199
51 Tang J W, Wang Y F, Fujihara H, et al. Stress corrosion cracking induced by the combination of external and internal hydrogen in Al-Zn-Mg-Cu alloy [J]. Scr. Mater., 2024, 239: 115804
52 Safyari M, Hojo T, Moshtaghi M. Effect of environmental relative humidity on hydrogen-induced mechanical degradation in an Al-Zn-Mg-Cu alloy [J]. Vacuum, 2021, 192: 110489
53 Taheri M, Albrecht J, Bernstein I, et al. Strain-rate effects on hydrogen embrittlement of 7075 aluminum [J]. Scr. Metall., 1979, 13: 871
54 Gest R J, Troiano A R. Stress corrosion and hydrogen embrittlement in an aluminum alloy [J]. Corrosion, 1974, 30: 274
[1] LIU Tianle, WEI Boxin, FU Anqing, SU Hang, CHEN Tingshu, WANG Chaoming, WANG Sui. Hydrogen Damage of X80 Pipeline Steel in Hydrogen-doped Gaseous Atmosphere[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[2] ZHANG Huiyun, ZHENG Liuwei, LIANG Wei. Effect of Annealing Process on Microstructure Evolution and Hydrogen Embrittlement Behavior of 304 Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[3] CHEN Kai, DU Yifan, XU Haoyun, LV Liang, DANG Guiming, WANG Yujin, ZHENG Shuqi. Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[4] LI Xincheng, LI Zhaonan, WANG Haifeng, XU Yunze, WANG Mingyu, ZHEN Xingwei. Hydrogen Embrittlement Sensitivity for Welded Structural Parts of DH36 Marine Engineering Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
[5] CUI Bolun, ZHAO Jie, LV Ran, LI Jingfa, YU Bo, YAN Donglei. Research Progress in Composite Protection Technology Against Hydrogen-embrittlement and -corrosion for Hydrogen-blended Natural Gas Pipeline[J]. 中国腐蚀与防护学报, 2025, 45(2): 327-337.
[6] ZHANG Qianru, SUN Qingqing. Hydrogen Enhanced Localized Plasticity: A Critical Review[J]. 中国腐蚀与防护学报, 2025, 45(2): 271-282.
[7] WAN Hongjiang, MING Hongliang, WANG Jianqiu, HAN En-Hou. Effect of Small Amount of O2 and CO on Hydrogen Embrittlement Susceptibility of X52 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 371-380.
[8] CHENG Kaiyuan, PENG Yang, HUANG Feng, CHENG Xianglong, XU Yunfeng, PENG Zhixian, LIU Jing. Adaptability of Typical Seamless Tube Steels to Hydrogen-blended Natural Gas Environments and Hydrogen- induced Damage Mechanism[J]. 中国腐蚀与防护学报, 2025, 45(2): 397-406.
[9] LI Xin, WEI Boxin, LU Yanghui, SUN Chen, YU Wentao, XU Meng, LIU Wei. Research Progress on Hydrogen Damage Mechanism of Pipeline Steel in Contact with Hydrogen Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1125-1133.
[10] XU Yunfeng, WANG Shaofeng, HE Long, LIU Dong, HUANG Feng, LIU Jing. Effect of Eco Pickled Surface Treatment on Hydrogen Embrittlement Sensitivity of QStE700TM Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 691-699.
[11] WANG Yanfei, LI Yaozhou, HUANG Yuting, XIE Honglin, WU Weijie. Effect of Grain Size on Hydrogen Embrittlement of 304L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[12] WANG Zhen, LIU Jing, ZHANG Shiqi, HUANG Feng. Effect of Strain Rate on Hydrogen Embrittlement Susceptibility of DP780 Steel with Hydrogen Pre-charging[J]. 中国腐蚀与防护学报, 2022, 42(1): 106-112.
[13] ZHANG Huiyun, ZHENG Liuwei, MENG Xianming, LIANG Wei. Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement Sensitivity of Cr15 Ferritic and 304 Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[14] ZHANG Qichao, HUANG Yanliang, XU Yong, YANG Dan, LU Dongzhu. Research Progress on Hydrogen Absorption and Embrittlement of Titanium and Its Alloy for High-level Nuclear Waste Container in Deep Geological Disposal Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[15] ZHAO Dongyang, ZHOU Yu, WANG Dongying, NA Duo. Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
No Suggested Reading articles found!