Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (6): 1649-1655    DOI: 10.11902/1005.4537.2023.397
Current Issue | Archive | Adv Search |
Structure and Adhesion of Oxide Scales on Casting Billet of 304 and 430 Stainless Steels
SUN Qiongqiong1, JIA Xiquan1, XU Zhenlin1(), HE Yizhu1, FAN Guangwei2, ZHANG Wei2, LI Huan1
1. School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243032, China
2. State Key Laboratory of Advanced Stainless Steel Materials, Taiyuan Iron and Steel (Group) Co., Ltd., Taiyuan 030003, China
Cite this article: 

SUN Qiongqiong, JIA Xiquan, XU Zhenlin, HE Yizhu, FAN Guangwei, ZHANG Wei, LI Huan. Structure and Adhesion of Oxide Scales on Casting Billet of 304 and 430 Stainless Steels. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1649-1655.

Download:  HTML  PDF(13164KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The structure and composition of oxide scales formed on casting billets of 304 austenitic and 430 ferritic stainless steel after being held in air at 1240oC for 4 h were characterized by means of field emission scanning electron microscope, energy dispersive spectroscopy and X-ray diffractometer. The adhesive strength between the oxide scale and the matrix was assessed via 3D micrometer scratch. The oxidation mechanism of the steels in actual working condition was discussed. The results show that the oxidation kinetics of the two stainless steels follow a parabolic low, and the oxidation rate of 430 stainless steel is significantly higher than that of 304 stainless steels. The oxidation products of the two stainless steels have a typical three-layered structure: i.e. the oxide scale composed of an outer layer and an inner layer, as well as an internal oxidation layer beneath the outer oxide scale. But the morphologies of the inner layer of oxide scale and internal oxidation layer for the two stainless steels are different. The inner layer of oxide scale of 304 stainless steel is relatively dense, while there exist obvious pores and cracks in the inner layer of oxide scale of 430 stainless steel, which is conducive to the inward diffusion of oxygen, so that accelerates the oxidation process. The internal oxidation layer of 304 stainless steel is mainly distributed as scattered blocks; while that of 430 stainless steel is distributed as continuous root-like shape, which enhances the adhesion between the oxide scale and the matrix.

Key words:  stainless steel      billet      oxide scale      structure      adhesion     
Received:  28 December 2023      32134.14.1005.4537.2023.397
ZTFLH:  TG142.1  
Fund: Major Scientific and Technological Projects in Shanxi Province(20181101016);National Undergraduate Training Program for Innovation and Entrepreneurship(202010360020)
Corresponding Authors:  XU Zhenlin, E-mail: xzl2015@ahut.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.397     OR     https://www.jcscp.org/EN/Y2024/V44/I6/1649

MaterialCSiMnNiCrCuVFe
304 stainless steel0.110.4241.178.4218.130.0330.103Bal.
430 stainless steel0.080.4680.4100.15516.430.0070.092Bal.
Table 1  Chemical compositions of 304 and 430 stainless steel billets
Fig.1  Schematic diagram of the experimental apparatus
Fig.2  Variations of mass gain (a) and square of mass gain (b) with time for 304 and 430 stainless steels during oxidation in air at 1240oC for 4 h
Fig.3  XRD patterns of the oxide scales formed on 304 (a) and 430 (b) stainless steels after oxidation at 1240oC in air for 4 h
Fig.4  Surface morphologies of 304 (a, c) and 430 (b, d) stainless steels oxidized in air at 1240oC for 4 h
MaterialPositionFeO
304 stainless steel143.2856.72
265.9834.02
430 stainless steel339.4360.57
464.0735.93
Table 2  EDS determined contents of Fe and O at the points marked in Fig.4c and d
Fig.5  Cross-sectional morphologies (a, b) and EDS line scannings (c, d) of 304 (a, c) and 430 (b, d) stainless steels oxidized at 1240oC in air for 4 h
Fig.6  Variations of friction force and scratch depth with loading force for 304 (a) and 430 (b) stainless steels oxidized at 1240oC in air for 4 h
Fig.7  Surface morphologies of scratchs of 304 (a, b) and 430 (c, d) stainless steels oxidized at 1240oC in air for 4 h
1 Cheng X W, Jiang Z Y, Wei D B, et al. Characteristics of oxide scale formed on ferritic stainless steels in simulated reheating atmosphere [J]. Surf. Coat. Technol., 2014, 258: 257
2 Yuan J T, Wang W, Zhang H H, et al. Investigation into the failure mechanism of chromia scale thermally grown on an austenitic stainless steel in pure steam [J]. Corros. Sci., 2016, 109: 36
3 Zhou X L, Zhu M, Hua X Z, et al. Effects of oxide scale on corrosion performance of SS400 hot rolled strip [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 109
(周贤良, 朱 敏, 华小珍 等. 氧化皮对SS400热轧带钢耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 109)
4 Wei L L, Chen L Q, Ma M Y, et al. Oxidation behavior of ferritic stainless steels in simulated automotive exhaust gas containing 5vol.% water vapor [J]. Mater. Chem. Phys., 2018, 205: 508
5 Liu X, Wang H, Zhu Z L, et al. Oxidation characteristics of austenitic heat-resistant steel HR3C and Sanicro25 in supercritical water for power station [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 529
(刘 晓, 王 海, 朱忠亮 等. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2020, 40: 529)
6 Wu Q L, Liu Y, Zhang Z H, et al. Oxidation behavior and high-temperature tensile properties of Fe-9Cr-(Mo, Mo/Ni) alloys [J]. Corros. Sci., 2021, 181: 109243
7 Chen G, Zhan C, Ueda M, et al. Effect of water vapor on morphology of oxide scales of Fe-Cr-Ni alloy at 800oC [J]. Heat Treat. Met., 2012, 37: 25
(陈 刚, 张 弛, 上田光敏 等. 水蒸气对Fe-Cr-Ni合金在800℃时的氧化膜形貌的影响 [J]. 金属热处理, 2012, 37(10): 25)
8 Mamede A S, Nuns N, Cristol A L, et al. Multitechnique characterisation of 304L surface states oxidised at high temperature in steam and air atmospheres [J]. Appl. Surf. Sci., 2016, 369: 510
9 Karimi N, Riffard F, Rabaste F, et al. Characterization of the oxides formed at 1000 °C on the AISI 304 stainless steel by X-ray diffraction and infrared spectroscopy [J]. Appl. Surf. Sci., 2008, 254: 2292
10 Col A, Parry V, Pascal C. Oxidation of a Fe-18Cr-8Ni austenitic stainless steel at 850oC in O2: Microstructure evolution during breakaway oxidation [J]. Corros. Sci., 2017, 114: 17
11 Cheng X W, Jiang Z Y, Wei D B, et al. High temperature oxidation behaviour of ferritic stainless steel SUS 430 in humid air [J]. Met. Mater. Int., 2015, 21: 251
12 Chandra-Ambhorn S, Phadungwong T, Sirivedin K. Effects of carbon and coiling temperature on the adhesion of thermal oxide scales to hot-rolled carbon steels [J]. Corros. Sci., 2017, 115: 30
13 Hu P, Yu Y H, Zhang X, et al. High temperature oxidation resistance of annealed 430 stainless steel after hot rolling [J]. Heat Treat. Met., 2016, 41(4): 74
(胡 潘, 于迎豪, 张栩煜 等. 热轧退火态430不锈钢的高温抗氧化性能 [J]. 金属热处理, 2016, 41(4): 74)
14 Xu Y L, Zhang X, Fan L J, et al. Improved oxidation resistance of 15 wt.% Cr ferritic stainless steels containing 0.08-2.45wt.% Al at 1000oC in air [J]. Corros. Sci., 2015, 100: 311
15 Yin K J, Qiu S Y, Tang R, et al. Characterization of the porosity of the oxide scales on ferritic-martensitic steel P91 and P92 exposed in supercritical water [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 1
(尹开锯, 邱绍宇, 唐 睿 等. 铁素体-马氏体钢P91和P92在超临界水中腐蚀后氧化膜多孔性分析 [J]. 中国腐蚀与防护学报, 2010, 30: 1)
16 Li Y H, Wang S Z, Sun P P, et al. Investigation on early formation and evolution of oxide scales on ferritic-martensitic steels in supercritical water [J]. Corros. Sci., 2018, 135: 136
17 Zheng Z B, Wang S, Long J, et al. Effect of rare earth elements on high temperature oxidation behaviour of austenitic steel [J]. Corros. Sci., 2020, 164: 108359
18 Shen Z, Chen K, Yu H B, et al. New insights into the oxidation mechanisms of a Ferritic-Martensitic steel in high-temperature steam [J]. Acta Mater., 2020, 194: 522
19 Martinelli L, Desgranges C, Rouillard F, et al. Comparative oxidation behaviour of Fe-9Cr steel in CO2 and H2O at 550oC: Detailed analysis of the inner oxide layer [J]. Corros. Sci., 2015, 100: 253
20 Demizieux M C, Desgranges C, Martinelli L, et al. Morphology and buckling of the oxide scale after Fe-9Cr Steel Oxidation in Water Vapor Environment [J]. Oxid. Met., 2019, 91: 191
21 Gheno T, Monceau D, Young D J. Mechanism of breakaway oxidation of Fe-Cr and Fe-Cr-Ni alloys in dry and wet carbon dioxide [J]. Corros. Sci., 2012, 64: 222
22 Suárez L, Houbaert Y, Eynde X V, et al. High temperature deformation of oxide scale [J]. Corros. Sci., 2009, 51: 309
[1] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[2] XU Zhiyu, HU Qian, HUANG Feng, LIU Jing, LU Xianzhong. Effect of Crevice Geometry on Chemical Environment of Crevice Solution and Corrosion Behavior of 2205 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1581-1588.
[3] MA Jinyao, DONG Nan, GUO Zhensen, HAN Peide. Effect of B and Ce Micro-alloying on Secondary Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[4] YU Zheng, CHEN Minghui, WANG Jinlong, YANG Shasha, WANG Fuhui. Influence of Alkali Metal Sulfate- and Chloride-salts Content in Artificial Coal Ash on Corrosion Behavior of HR3C Steels With and Without Aluminizing[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
[5] CHENG Yonghe, FU Junwei, ZHAO Maomi, SHEN Yunjun. Research Progress on Corrosion Resistance of High-entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[6] ZHAO Qian, ZHANG Jie, MAO Ruirui, MIAO Chunhui, BIAN Yafei, TENG Yue, TANG Wenming. Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[7] WU Ming, REN Yanjie, MA Zhuochun, ZHANG Sitian, CHEN Jian, NIU Yan. High Temperature Oxidation Behavior of F55 Super Duplex Stainless Steel at 800-1000oC in 1.013×105 Pa O2[J]. 中国腐蚀与防护学报, 2024, 44(5): 1332-1338.
[8] WANG Tiancong, ZHAO Dongyang, XIANG Xueyun, WU Hang, WANG Wen. Degradation Behavior of an Epoxy Corrosion-resistant Coating in NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(5): 1361-1369.
[9] HONG Xiaomu, WANG Yongqiang, LI Na, TIAN Kai, DU Juan. Effect of Aging on Microstructures and Localized Corrosion of Custom455 Martensitic Age-hardening Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(5): 1285-1294.
[10] QIAO Ze, LI Qingquan, LIU Xiaohang, LI Yizhou. Effect of Nitrate and Galvanic Couple on Crevice Corrosion Behavior of 7075-T651 Al-alloy in Neutral NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[11] YU Jiahui, WANG Tongtong, GAO Yun, GAO Rongjie. Fabrication and Photocathodic Protection Performance of Bi2S3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(4): 901-908.
[12] ZHU Huiwen, ZHENG Li, ZHANG Hao, YU Baoyi, CUI Zhibo. Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[13] LIU Jiuyun, DONG Lijin, ZHANG Yan, WANG Qinying, LIU Li. Research Progress on Sulfide Stress Corrosion Cracking of Dissimilar Weld Joints in Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[14] FENG Xingguo, GU Zhuoran, FAN Qiqi, LU Xiangyu, YANG Yashi. Corrosion Resistance of 2205 Stainless Steel Bar in Modified Coral Concretes[J]. 中国腐蚀与防护学报, 2024, 44(3): 789-796.
[15] LI Chan, WANG Qingtian, YANG Chenggang, ZHANG Xianwei, HAN Dongao, LIU Yuwei, LIU Zhiyong. Corrosion Behavior of 904L Super-austenitic Stainless Steel in Simulated Primary Water in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
No Suggested Reading articles found!