Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (6): 1389-1398    DOI: 10.11902/1005.4537.2024.015
Current Issue | Archive | Adv Search |
Influence of Alkali Metal Sulfate- and Chloride-salts Content in Artificial Coal Ash on Corrosion Behavior of HR3C Steels With and Without Aluminizing
YU Zheng, CHEN Minghui(), WANG Jinlong, YANG Shasha, WANG Fuhui
Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
Cite this article: 

YU Zheng, CHEN Minghui, WANG Jinlong, YANG Shasha, WANG Fuhui. Influence of Alkali Metal Sulfate- and Chloride-salts Content in Artificial Coal Ash on Corrosion Behavior of HR3C Steels With and Without Aluminizing. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1389-1398.

Download:  HTML  PDF(19034KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of HR3C steels with and without aluminizing beneath simulated coal ash deposits with varying content of alkali metal sulfate (Na2SO4 + K2SO4) and chloride (KCl) salts was comparatively studied in a gas mixture of SO2,O2, H2O and CO2 at 700oC. The corrosion form of steels is oxidation with internal-sulfidation and -oxidation. When there is no chloride salt in the ash deposits, the corrosion depth of the alloy increases linearly with the mass fraction of Na2SO4 + K2SO4. However, the aluminized HR3C steel only underwent slight oxidation. When the content of alkali salts remains unchanged, while the content of KCl increases successively to 0.5%, 1% and 2% (mass fraction), the corrosion degree of HR3C is intensified in a jumping manner, but the aluminized ones still maintain good corrosion resistance.

Key words:  stainless steel      hot corrosion      coal ash corrosion      fireside corrosion      aluminide coating     
Received:  11 January 2024      32134.14.1005.4537.2024.015
ZTFLH:  TG172  
Fund: Fundamental Research Funds for the Central Universities(N2302018);Ningbo Yuyao City Science and Technology Plan Project, China(2023J03010010)
Corresponding Authors:  CHEN Minghui, E-mail: mhchen@mail.neu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.015     OR     https://www.jcscp.org/EN/Y2024/V44/I6/1389

Coal ash numberK2SO4Na2SO4CaSO4α-Fe2O3α-Al2O3SiO2KCl
1#2229622390
2#4425622390
3#6621622390
4#1.751.7529622390.5
5#1.51.529622391
6#1129622392
Table 1  Composition of simulated coal ash
Fig.1  Surface (a) and cross-sectional (b) morphologies of A-HR3C, surface morphology of HR3C (c), and corresponding XRD patterns of A-HR3C and HR3C surface (d)
Fig.2  Macro photos of HR3C (a-f) and A-HR3C (g-l) corroded in 1# (a, g), 2# (b, h), 3# (c, i), 4# (d, j), 5# (e, k) and 6# (f, l) coal ash for 1000 h
Fig.3  Mass change curves of HR3C (a) and A-HR3C (b) after corrosion in simulated coal ash at 700oC for 1000 h
Fig.4  XRD patterns of HR3C after corrosion in simulated coal ash at 700oC for 1000 h
Fig.5  Surface morphologies of HR3C alloy after corrosion in different coal ash for 1000 h: (a) 1#, (b) 2#, (c) 3#, (d) 4#, (e) 5#, (f) 6#
Fig.6  Cross-sectional morphologies of HR3C alloy after corrosion in different coal ash for 1000 h: (a) 1#, (b) 2#, (c) 3#, (d) 4#, (e) 5#, (f) 6#
PositionOFeCrNiAlSiSOthers
p150.0227.9014.680.053.843.43-0.08
p247.4032.999.380.906.071.99-1.27
p351.6020.002.53-10.7914.40-0.68
p450.6630.897.360.478.151.47-1.00
p554.0636.284.461.611.371.90-0.32
p654.7715.22-3.677.8816.69-1.77
p736.6412.6935.665.740.062.046.570.60
Table 2  Element analysis of different regions in Fig. 5
Fig.7  Thickness of the corrosion zone of HR3C after corrosion in 1-6# coal ash for 1000 h
Fig.8  XRD patterns of A-HR3C after corrosion in simulated coal ash at 700oC for 1000 h
Fig.9  Surface morphologies of A-HR3C alloy after corrosion in different coal ash for 1000 h: (a) 1#, (b) 2#, (c) 3#, (d) 4#, (e) 5#, (f) 6#
Fig.10  Cross-sectional morphologies of A-HR3C alloy after corrosion in different coal ash for 1000 h: (a) 1#, (b) 2#, (c) 3#, (d) 4#, (e) 5#, (f) 6#
PositionOFeCrNiAlSiSOthers
p126.0021.928.016.0635.971.84-0.08
p241.5219.364.763.4526.004.49-1.27
p345.5516.373.091.9325.835.44-0.68
p431.4619.756.615.6033.372.85-1.00
p533.7920.445.543.8932.942.78-0.32
p650.485.382.090.4633.064.430.751.77
Table 3  Element analysis of different regions in Fig. 9
1 Roy R, Bandi S, Li X L, et al. Synergistic reduction of SO2 emissions while co-firing biomass with coal in pilot-scale (1.5 MWth) and full-scale (471 MWe) combustors [J]. Fuel, 2024, 358: 130191
2 Liu L, Memon M Z, Xie Y B, et al. Recent advances of research in coal and biomass co-firing for electricity and heat generation [J]. Circ. Econ., 2023, 2: 100063
3 Spiegl N, Long X Y, Berrueco C, et al. Oxy-fuel co-gasification of coal and biomass for negative CO2 emissions [J]. Fuel, 2021, 306: 121671
4 Chen Z Y, Liu J Y, Chen H S, et al. Oxy-fuel and air atmosphere combustions of Chinese medicine residues: performances, mechanisms, flue gas emission, and ash properties [J]. Renew. Energy, 2022, 182: 102
5 Singh D, Croiset E, Douglas P L, et al. Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion [J]. Energy Convers. Manage., 2003, 44: 3073
6 Zhang D K. Ultra-Supercritical Coal Power Plants [M]. Sawston: Woodhead Publishing, 2013: 244
7 Gao Z Y, Hu Z F, Zhang J, et al. Effect of on-site service for 16, 000 and 38, 000 h on microstructure and mechanical properties of austenitic steel HR3C reheater tubes [J]. Eng. Failure Anal., 2023, 149: 107247
8 Liu H H, Liu G M, Li F T, et al. Oxidation behavior of TP439 stainless steel in water vapor at 800oC [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 377
(刘欢欢, 刘光明, 李富天 等. TP439不锈钢在800℃高温水蒸气中的初期氧化行为 [J]. 中国腐蚀与防护学报, 2023, 43: 377)
doi: 10.11902/1005.4537.2022.149
9 Wang B H, Xiao B, Pan P Y, et al. Research progress on corrosion of metal interconnector for solid oxide fuel cells [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 6
(王碧辉, 肖 博, 潘佩媛 等. 固体氧化物燃料电池金属连接体腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 6)
doi: 10.11902/1005.4537.2022.049
10 Saunders S R J, Monteiro M, Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: a review [J]. Prog. Mater. Sci., 2008, 53: 775
11 Jiang C Y, Feng M, Chen M H, et al. Corrosion behaviour of iron and nickel aluminide coatings under the synergistic effect of NaCl and water vapour [J]. Corros. Sci., 2021, 187: 109484
12 Xu J X, Geng S J, Wang J L, et al. Effects of solid NaCl deposit and water vapor on corrosion resistance of K452 superalloy and aluminized coating [J]. Corros. Commun., 2023, 9: 13
13 Li Q, Yuan X H, Li D J, et al. Effect of pre-oxidation treatment on the hot corrosion behavior of pack-cemented aluminide coatings on the K438 alloy in salt mixture [J]. Corros. Commun., 2022, 5: 1
14 Xu Z H, Wang Z K, Niu J, et al. Effects of deposition temperature on the kinetics growth and protective properties of aluminide coatings [J]. J. Alloy. Compd., 2015, 632: 238
15 Sun W Y, Chen M H, Wang F H. Effect of oxygen doping on the corrosion behavior of nanocrystalline coating under the synergy of solid NaCl deposit and water vapor [J]. J. Mater. Sci. Technol., 2023, 141: 257
doi: 10.1016/j.jmst.2022.09.023
16 Agüero A, Muelas R, Pastor A, et al. Long exposure steam oxidation testing and mechanical properties of slurry aluminide coatings for steam turbine components [J]. Surf. Coat. Technol., 2005, 200: 1219
17 Yang Z, Lu J T, Zhang P, et al. Oxidation performance and degradation mechanism of the slurry aluminide coating deposited on Super304H in steam at 600-650oC [J]. Surf. Coat. Technol., 2020, 391: 125700
18 Lu J T, Gu Y F, Yang Z. Coal ash induced corrosion of three candidate materials for superheater boiler tubes of advanced ultrasupercritical power station [J]. Corros. Sci. Prot. Technol., 2014, 26: 205
(鲁金涛, 谷月峰, 杨 珍. 3种700℃级超超临界燃煤锅炉备选高温合金煤灰腐蚀行为 [J]. 腐蚀科学与防护技术, 2014, 26: 205)
doi: 10.11903/1002.6495.2013.155
19 Yuan L, Xie X, Chen M H, et al. Air oxidation and NaCl corrosion behavior of 20 steel without and with enamel coating at 400oC [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 890
(袁 磊, 谢 新, 陈明辉 等. 20钢及其搪瓷涂层在400℃下的氧化和NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 890)
20 Qu Z P, Zhang B B, Xie G X, et al. Research progress on protection technology for waste incinerator heating surfaces [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 452
(曲作鹏, 张贝贝, 谢广校 等. 垃圾焚烧炉受热面防护技术的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 452)
doi: 10.11902/1005.4537.2022.237
21 Lu J T, Yang Z, Li Y, et al. Fireside corrosion behaviors of Super304H and HR3C in coal Ash/Gas environment with different SO2 contents at 650oC [J]. J. Mater. Eng. Perform., 2018, 27: 2855
22 Musić S, Popović S, Ristić M. Chemical and structural properties of the system Fe2O3-Cr2O3 [J]. J. Mater. Sci., 1993, 28: 632
23 Benny S, Grau-Crespo R, de Leeuw N H. A theoretical investigation of α-Fe2O3-Cr2O3 solid solutions [J]. Phys. Chem. Chem. Phys., 2009, 11: 808
24 Yu Z, Lu J T, Chen M H, et al. Effect of pre-oxidation on hot corrosion resistance of HR3C stainless steel in sulfate salt with or without Fe2O3 [J]. Corros. Sci., 2021, 192: 109789
25 Young D J. High Temperature Oxidation and Corrosion of Metals [M]. 2nd ed. Amsterdam: Elsevier, 2016: 393
26 Rapp R A. Hot corrosion of materials: a fluxing mechanism? [J]. Corros. Sci., 2002, 44: 209
27 Ma W C, Wenga T, Frandsen F J, et al. The fate of chlorine during MSW incineration: vaporization, transformation, deposition, corrosion and remedies [J]. Prog. Energy Combust. Sci., 2020, 76: 100789
28 Wright I G, Shingledecker J P. Rates of fireside corrosion of superheater and reheater tubes: making sense of available data [J]. Mater. High Temp., 2015, 32: 426
[1] SUN Qiongqiong, JIA Xiquan, XU Zhenlin, HE Yizhu, FAN Guangwei, ZHANG Wei, LI Huan. Structure and Adhesion of Oxide Scales on Casting Billet of 304 and 430 Stainless Steels[J]. 中国腐蚀与防护学报, 2024, 44(6): 1649-1655.
[2] ZHANG Jinlong, FU Guangyan, NING Likui, LIU Enze, TAN Zheng, TONG Jian, ZHENG Zhi. Hot Corrosion Behavior of a Nickel Based Single Crystal High Temperature Alloy Subjected to Different Heat Treatments[J]. 中国腐蚀与防护学报, 2024, 44(6): 1625-1632.
[3] XU Zhiyu, HU Qian, HUANG Feng, LIU Jing, LU Xianzhong. Effect of Crevice Geometry on Chemical Environment of Crevice Solution and Corrosion Behavior of 2205 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1581-1588.
[4] MA Jinyao, DONG Nan, GUO Zhensen, HAN Peide. Effect of B and Ce Micro-alloying on Secondary Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[5] WU Ming, REN Yanjie, MA Zhuochun, ZHANG Sitian, CHEN Jian, NIU Yan. High Temperature Oxidation Behavior of F55 Super Duplex Stainless Steel at 800-1000oC in 1.013×105 Pa O2[J]. 中国腐蚀与防护学报, 2024, 44(5): 1332-1338.
[6] HONG Xiaomu, WANG Yongqiang, LI Na, TIAN Kai, DU Juan. Effect of Aging on Microstructures and Localized Corrosion of Custom455 Martensitic Age-hardening Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(5): 1285-1294.
[7] QIAO Ze, LI Qingquan, LIU Xiaohang, LI Yizhou. Effect of Nitrate and Galvanic Couple on Crevice Corrosion Behavior of 7075-T651 Al-alloy in Neutral NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[8] YU Jiahui, WANG Tongtong, GAO Yun, GAO Rongjie. Fabrication and Photocathodic Protection Performance of Bi2S3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(4): 901-908.
[9] LI Chan, WANG Qingtian, YANG Chenggang, ZHANG Xianwei, HAN Dongao, LIU Yuwei, LIU Zhiyong. Corrosion Behavior of 904L Super-austenitic Stainless Steel in Simulated Primary Water in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[10] XING Shaohua, PENG Wenshan, QIAN Yao, LI Xiangbo, MA Li, ZHANG Dalei. Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[11] HU Qi, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Hot Corrosion Behavior of Inconel 718 Without and With Aluminide Coating in Air Beneath a Thin Film of Salt Mixture of Na2SO4 + 5%NaCl[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[12] GENG Zhenzhen, ZHANG Yuzhu, DU Xiaojiang, WU Hanhui. Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[13] FENG Xingguo, GU Zhuoran, FAN Qiqi, LU Xiangyu, YANG Yashi. Corrosion Resistance of 2205 Stainless Steel Bar in Modified Coral Concretes[J]. 中国腐蚀与防护学报, 2024, 44(3): 789-796.
[14] YE Mengying, YU Jiahui, WANG Tongtong, GAO Rongjie. Fabrication and Photocathodic Protection Performance of Bi2S3/CdS/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 372-380.
[15] LING Dong, HE Kun, YU Liang, DONG Lijin, ZHANG Huali, LI Yufei, WANG Qinying, ZHANG Zhi. Finite Element Simulation of Pitting Corrosion of Super 13Cr Stainless Steel in High-temperature and High-pressured CO2 Containing Artificial Formation Waters[J]. 中国腐蚀与防护学报, 2024, 44(2): 303-311.
No Suggested Reading articles found!