Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (4): 901-908    DOI: 10.11902/1005.4537.2023.270
Current Issue | Archive | Adv Search |
Fabrication and Photocathodic Protection Performance of Bi2S3/TiO2 Nanocomposites for 304 Stainless Steel
YU Jiahui, WANG Tongtong, GAO Yun, GAO Rongjie()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Cite this article: 

YU Jiahui, WANG Tongtong, GAO Yun, GAO Rongjie. Fabrication and Photocathodic Protection Performance of Bi2S3/TiO2 Nanocomposites for 304 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 901-908.

Download:  HTML  PDF(5844KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TiO2 nanotube arrays are decorated with Bi2S3 by a successive ionic layer adsorption and reaction (SILAR) method, aiming to enhance the photoelectric conversion ability of TiO2 and photogenerated cathodic protection performance of TiO2 nanotube arrays for 304 stainless steel. B-(x)/TiO2 nanotubes (x = 1,3,5,7) were prepared by changing the number of deposition cycles of Bi2S3. The morphology, structure, light response ability and photogenerated carrier separation efficiency of Bi2S3/TiO2 nanocomposites were examined by means of XRD, SEM and XPS. At the same time, the photoelectrochemical properties of Bi2S3/TiO2 nanocomposites were tested under simulated sunlight. In addition, the effect of the number of deposition cycles of Bi2S3 on the photocathodic protection performance of TiO2 nanocomposites was also studied. After Bi2S3 modification, the band gap of the composites decreases, and the recombination rate of photogenerated carriers decreases greatly. When a 5 cyclic deposition of Bi2S3 is adopted, the photoelectrochemical properties of the prepared nanocomposites are the best. Of which the band gap is reduced to 2.9 eV, and the photocurrent density is increased from 200 μA·cm-2 to 550 μA·cm-2 under the condition of turning on light, which is 2.75 times that of the bare TiO2 nanotube arrays. After coupling the modified nanocomposite with 304 stainless steel, the coupling potential can be reduced to -1.0 V under simulated sunlight, which is about 80 mV lower than the coupling potential before modification, which can further improve the photogenerated cathodic protection effect on 304 stainless steel.

Key words:  photogenerated cathodic protection      modification      Bi2S3/TiO2      304 stainless steel     
Received:  31 August 2023      32134.14.1005.4537.2023.270
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China-Shandong Joint Fund(U1706221)
Corresponding Authors:  GAO Rongjie, E-mail: dmh206@ouc.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.270     OR     https://www.jcscp.org/EN/Y2024/V44/I4/901

Fig.1  Schematic diagram of the preparation process of TiO2 nanotube arrays
Fig.2  Schematic diagram of the preparation process of Bi2S3/TiO2 nanocomposites
Fig.3  Schematic diagram of electrochemical testing device
Fig.4  XRD patterns of TiO2 nanotubearrays and Bi2S3/TiO2 nanocomposite
Fig.5  SEM images of TiO2 nanotube (a), B-1/TiO2 (b), B-3/TiO2 (c), B-5/TiO2 (d) and B-7/TiO2 (e) nanocomposites, and EDS spectrum of B-5/TiO2 nanocomposite (f)
Fig. 6  EDS elemental mappings of B-5/TiO2 nanocomposite: (a) Ti, (b) O, (c) Bi, (d) S
Fig.7  XPS spectra of B-5/TiO2 nanocomposite: (a) survey spectrum, (b) Ti 2p, (c) O 1s, (d) Bi 4f, (e) S 2p
Fig.8  Tauc curves of UV-Vis diffuse reflectance spectra of TiO2 nanotube and B-5/TiO2 nanocomposite
Fig.9  Photoluminescence spectra of TiO2 nanotube and B-x/TiO2 nanocomposites
Fig.10  Photocurrent density-time curves of TiO2 nanocomposites under intermittent visible light
Fig.11  Potential changes of 304 stainless steel coupled with TiO2 nanocomposites under intermittent visible light
Fig.12  Nyquist plots (a) and equivalent circuit diagram (b) of TiO2 nanocomposites under simulated sunlight
SampleRs / Ω·cm2Q1 / F·cm-2Rct / Ω·cm2n
TiO220.152.1 × 10-326130.83
B-1/TiO219.952.0 × 10-32372.00.80
B-3/TiO220.475.2 × 10-31136.00.68
B-5/TiO220.106.3 × 10-3463.50.60
B-7/TiO219.443.0 × 10-31829.00.73
Table 1  Fitting parameters of EIS
Fig.13  Schematic diagram of the energy band structures of Bi2S3 and TiO2 semiconductors
[1] Zhang Y, Yin X Y, Yan F Y. Effect of halide concentration on tribocorrosion behaviour of 304SS in artificial seawater [J]. Corros. Sci., 2015, 99: 272
[2] Zhang Y, Yin X Y, Yan Y F, et al. Tribocorrosion behaviors of 304SS: effect of solution pH [J]. RSC Adv., 2015, 5: 17676
[3] Jiang J H, Zhang X Y, Jin Z Q. Research progress in photochemical cathodic protection technology [J]. Mar. Sci., 2021, 45(12): 150
蒋继宏, 张小影, 金祖权. 光电化学阴极保护技术研究进展 [J]. 海洋科学, 2021, 45(12): 150
[4] Chen F W, Liu B, Jian D H, et al. Research progress and existing problems of photocathodic protection technology [J]. J. Mater. Eng., 2021, 49(12): 83
陈凡伟, 刘 斌, 蹇冬辉 等. 光生阴极保护技术的研究进展及其存在的问题 [J]. 材料工程, 2021, 49(12): 83
doi: 10.11868/j.issn.1001-4381.2021.000469
[5] Subasri R, Shinohara T. Application of the photoeffect in TiO2 for cathodic protection of copper [J]. Electrochemistry, 2004, 72: 880
[6] Kumar S G, Devi L G. Review on modified TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics [J]. J. Phys. Chem., 2011, 115A: 13211
[7] Guo H X, Li L L, Su C, et al. Effective photocathodic protection for 304 stainless steel by PbS quantum dots modified TiO2 nanotubes [J]. Mater. Chem. Phys., 2021, 258: 123914
[8] Zheng L X, Teng F, Ye X Y, et al. Photo/electrochemical applications of metal sulfide/TiO2 heterostructures [J]. Adv. Energy Mater., 2020, 10: 1902355
[9] Luo J H, Wei H Y, Huang Q L, et al. Highly efficient core-shell CuInS2-Mn doped CdS quantum dot sensitized solar cells [J]. Chem. Commun., 2013, 49: 3881
[10] Yang L, Ma Y P, Liu J H, et al. Improving the performance of solid-state quantum dot-sensitized solar cells based on TiO2/CuInS2 photoelectrodes with annealing treatment [J]. RSC Adv., 2016, 6: 92869
[11] Yang Y Y, Zhang W W, Xu Y, et al. Ag2S decorated TiO2 nanosheets grown on carbon fibers for photoelectrochemical protection of 304 stainless steel [J]. Appl. Surf. Sci., 2019, 494: 841
[12] Cheng L Y, Ding H M, Chen C H, et al. Ag2S/Bi2S3 co-sensitized TiO2 nanorod arrays prepared on conductive glass as a photoanode for solar cells [J]. J. Mater. Sci., 2016, 27: 3234
[13] Hu J, Guan Z C, Liang Y, et al. Bi2S3 modified single crystalline rutile TiO2 nanorod array films for photoelectrochemical cathodic protection [J]. Corros. Sci., 2017, 125: 59
[14] Li H, Wang X T, Wei Q Y, et al. Photocathodic protection of 304 stainless steel by Bi2S3/TiO2 nanotube films under visible light [J]. Nanoscale Res. Lett., 2017, 12: 80
[15] Li X L, Yang M, Zhu D, et al. Preparation of TiO2/Bi2S3 composite photo-anode through ultrasound-assisted successive ionic layer adsorption and reaction method for improving the photoelectric performance [J]. J. Electron. Mater., 2020, 49: 3242
[16] Zumeta-Dubé I, Ruiz-Ruiz V F, Díaz D, et al. TiO2 sensitization with Bi2S3 quantum dots: the inconvenience of sodium ions in the deposition procedure [J]. J. Phys. Chem., 2014, 118C: 11495
[17] Wang Q Y, Liu Z Y, Jin R C, et al. SILAR preparation of Bi2S3 nanoparticles sensitized TiO2 nanotube arrays for efficient solar cells and photocatalysts [J]. Sep. Purif. Technol., 2019, 210: 798
[18] Zhou M J, Zeng Z O, Zhong L. Photogenerated cathode protection properties of nano-sized TiO2/WO3 coating [J]. Corros. Sci., 2009, 51: 1386
[19] Kubo T, Nakahira A. Local structure of TiO2-derived nanotubes prepared by the hydrothermal process [J]. J. Phys. Chem., 2008, 112C: 1658
[20] Antony R P, Mathews T, Dash S, et al. X-ray photoelectron spectroscopic studies of anodically synthesized self aligned TiO2 nanotube arrays and the effect of electrochemical parameters on tube morphology [J]. Mater. Chem. Phys., 2012, 132: 957
[21] He H C, Berglund S P, Xiao P, et al. Nanostructured Bi2S3/WO3 heterojunction films exhibiting enhanced photoelectrochemical performance [J]. J. Mater. Chem., 2013, 1A: 12826
[22] Weng B, Zhang X, Zhang N, et al. Two-dimensional MoS2 nanosheet-coated Bi2S3 discoids: synthesis, formation mechanism, and photocatalytic application [J]. Langmuir, 2015, 31: 4314
doi: 10.1021/la504549y pmid: 25625414
[23] Chen L, He J, Yuan Q, et al. CuS-Bi2S3 hierarchical architectures: controlled synthesis and enhanced visible-light photocatalytic performance for dye degradation [J]. RSC Adv., 2015, 5: 33747
[24] Lin Z Q, Lai Y K, Hu R G, et al. A highly efficient ZnS/CdS@TiO2 photoelectrode for photogenerated cathodic protection of metals [J]. Electrochim. Acta, 2010, 55: 8717
[25] Li X L, Wang X Y, Liu J L, et al. Bismuth sulfide decorated TiO2 arrays heterojunction assembly for enhanced photoelectrochemical performance [J]. Optik, 2022, 252: 168522
[26] Su N, Ye M Y, Li J M, et al. Fabrication of ZIF-8/TiO2 composite film and its photogeneration cathodic protection performance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 267
苏 娜, 叶梦颖, 李建民 等. ZIF-8/TiO2纳米复合材料的制备及光生阴极保护性能 [J]. 中国腐蚀与防护学报, 2022, 42: 267
[27] Wang W C, Wang X T, Wang N, et al. Bi2Se3 sensitized TiO2 nanotube films for photogenerated cathodic protection of 304 stainless steel under visible light [J]. Nanoscale Res. Lett., 2018, 13: 295
[28] Jiao Z B, Zhang Y, Chen T, et al. TiO2 nanotube arrays modified with Cr-Doped SrTiO3 nanocubes for highly efficient hydrogen evolution under visible light [J]. Chem. Eur. J., 2014, 20: 2654
[29] Bao C Y, Li J M, Ye M Y, et al. Preparation of TiO2 nanotube arrays in composite electrolytes and their photogenerated cathodic protection performance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 759
鲍晨宇, 李建民, 叶梦颖 等. 复合电解液中TiO2纳米管阵列的制备及光生阴极保护性能 [J]. 中国腐蚀与防护学报, 2022, 42: 759
doi: 10.11902/1005.4537.2021.255
[30] Cai F G. Fabrication and photoelectrochemical properties study of Bi2S3/PbS-sensitized TiO2 nanotube arrays [D]. Chengdu: Southwest Jiaotong University, 2013
蔡芳共. Bi2S3、PbS敏化TiO2纳米管阵列的制备及其光电性能研究 [D]. 成都: 西南交通大学, 2013
[31] Wang B, Cao J T, Dong Y X, et al. An in situ electron donor consumption strategy for photoelectrochemical biosensing of proteins based on ternary Bi2S3/Ag2S/TiO2 NT arrays [J]. Chem. Commun., 2018, 54: 806
[1] LI Hongling, LANG Wuke. Environmentally Friendly Anticorrosive Materials-Preparation and Research Progress of Polyaniline Nanocomposites[J]. 中国腐蚀与防护学报, 2024, 44(4): 874-882.
[2] QIAO Ze, LI Qingquan, LIU Xiaohang, LI Yizhou. Effect of Nitrate and Galvanic Couple on Crevice Corrosion Behavior of 7075-T651 Al-alloy in Neutral NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[3] LI Shuo, LI Xichao, ZHAO Jingxiang, DAI Zuoqiang, XU Bin, SUN Mingyue, ZHENG Lili. Research Progress on Life-extension of Gun Barrel Based on Coating Modification[J]. 中国腐蚀与防护学报, 2024, 44(2): 295-302.
[4] YE Mengying, YU Jiahui, WANG Tongtong, GAO Rongjie. Fabrication and Photocathodic Protection Performance of Bi2S3/CdS/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 372-380.
[5] LI Danhong, YANG Tengxun, SUN Tianxiang, LI Xinglinmao, MA Chengcheng, ZHANG Yue, CHEN Shougang. Preparation and Anti-corrosion Properties of Silica Aerogel-modified Polyurethane Composite Coatings[J]. 中国腐蚀与防护学报, 2024, 44(1): 167-174.
[6] CAO Jingyi, LI Jing, YIN Wenchang, MENG Fandi, LIU Li. Histamine-modified Epoxy Resin and its Effect on Properties of Organic Coatings[J]. 中国腐蚀与防护学报, 2024, 44(1): 151-158.
[7] CHEN Shirun, CHEN Wenge, QIAN Ying, ZHANG Hui. Preparation and Perfromance of Rare Earth Cerium Modified Graphene Oxide / Waterborne Epoxy Resin Composite Coating[J]. 中国腐蚀与防护学报, 2024, 44(1): 107-118.
[8] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[9] MAO Feixiong, ZHOU Yuting, YAO Wenqing, SHEN Xiang, XIAO Long, LI Minghui. Growth Kinetics of Steady-state Passive Film on Type 304 Stainless Steel Based on Point Defect Model[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[10] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[11] JIANG Fangfang, YUN Hong, PENG Li, ZHANG Yihao, LI Weishun, DAI Wenjing, WANG Baofeng, XU Qunjie. Protective Performance of NiFe-LDH Composite Coatings Modified by insitu Polymerized Polyaniline[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[12] LIU Ling, SHAO Ziya, JIA Tianyue, LIU Guoqiang, LEI Bing, MENG Guozhe. Research Progress on Application of Halloysite Nanotubes for Modification of Smart Anti-corrosion Coating[J]. 中国腐蚀与防护学报, 2022, 42(4): 523-530.
[13] GE Chengyue, LUO Xiangping, WANG Jing, DUAN Jizhou, WANG Ning, HOU Baorong. Properties of KH550 and Hydroxyl Silicone Oil Co-modified Epoxy Resin and Its Mg-rich Primer[J]. 中国腐蚀与防护学报, 2022, 42(4): 590-596.
[14] CHEN Zhijian, ZHOU Xuejie, CHEN Hao. Corrosion Behavior of Riveted Pair of 6A01 Al-alloy-/304 Stainless Steel-plate Used for High-speed Train[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[15] LIU Xuanxuan, YU Jinshan, GAO Yan, ZHAO Peng, WANG Qiwei, DU Zhuoling, ZHANG Junxi. Effect of APTES Modified Montmorillonite on Protective Property of Hybrid Sol-gel Coating on Mg-alloy[J]. 中国腐蚀与防护学报, 2022, 42(3): 464-470.
No Suggested Reading articles found!