|
|
Effect of Rolling Scale on Evolution of Fast-stabilized Rust Layer and Corrosion Resistance of a Weathering Steel |
ZHANG Jiawei1, HUANG Feng1( ), WANG Hanmin1, LANG Fengjun2, YUAN Wei1, LIU Jing1 |
1. Hubei Engineering Technology Research Center of Marine Materials and Service Safety, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China 2. R&D Center of Wuhan Iron & Steel Co., Ltd., Baosteel Central Research Institute, Wuhan 430080, China |
|
Cite this article:
ZHANG Jiawei, HUANG Feng, WANG Hanmin, LANG Fengjun, YUAN Wei, LIU Jing. Effect of Rolling Scale on Evolution of Fast-stabilized Rust Layer and Corrosion Resistance of a Weathering Steel. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 891-900.
|
Abstract The effect of mill scale on the evolution of the fast-stabilized rust layer and anti-corrosion performance of Q345qDNH weathering steel in industrial atmospheric environment was studied via real atmospheric exposure testing, field emission scanning electron microscope (FE-SEM), field emission electron probe (FE-EPMA), micro-Raman Spectrum and electrochemical technique. The results showed that the presence of Fe3O4, Fe2O3, a small amount of FeO and FeCr2O4 in the oxide scales could improve the compactness of the rust layer, but could not change the types of corrosion products of Q345qDNH weathering steel. The corrosion products of the bare steel and the steel with mill scale were mainly composed of γ-FeOOH, α-FeOOH and Fe3O4. In the three types of corrosion products, the propagation of α-FeOOH is an inward growing process. The steels with mill scales present better rust layer stabilization and corrosion resistance due to the existence of Fe3O4 in the mill scale could promote the formation of α-FeOOH.
|
Received: 10 September 2023
32134.14.1005.4537.2023.288
|
|
Fund: National Natural Science Foundation of China(U21A20113) |
Corresponding Authors:
HUANG Feng, E-mail: huangfeng@wust.edu.cn
|
[1] |
Lin P F, Yang Z M, Chen Y, et al. Development of a Cr series surface rust layer stabilizer of weather resistant steels [J]. Corros. Prot., 2023, 44(3): 39
|
|
林鹏飞, 杨忠民, 陈 颖 等. 一种Cr系耐候钢表面锈层稳定剂的研发 [J]. 腐蚀与防护, 2023, 44(3): 39
|
[2] |
Shi J, Hu X W, He B, et al. Surface stabilization and rust structure of weathering steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 856
|
|
石 践, 胡学文, 何 博 等. 耐候钢表面稳定化处理及锈层结构研究 [J]. 中国腐蚀与防护学报, 2022, 42: 856
|
[3] |
Morcillo M, Díaz I, Chico B, et al. Weathering steels: From empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83: 6
|
[4] |
Oh S J, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine, rural and industrial environments [J]. Corros. Sci., 1999, 41: 1687
|
[5] |
Shi Z J, Wang L, Chen N, et al. Research status and development on surface rust layer and stabilizing treatment of weathering steels [J]. Corros. Sci. Prot. Technol., 2015, 27: 503
|
|
石振家, 王 雷, 陈 楠 等. 耐候钢表面锈层及其稳定化处理现状与发展趋势 [J]. 腐蚀科学与防护技术, 2015, 27: 503
doi: 10.11903/1002.6495.2014.363
|
[6] |
Liu H X, Huang F, Yuan W, et al. Corrosion behavior of 690 MPa grade high strength bainite steel in a simulated rural atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 416
|
|
刘海霞, 黄 峰, 袁 玮 等. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2020, 40: 416
doi: 10.11902/1005.4537.2020.002
|
[7] |
Wang H M, Huang F, Yuan W, et al. Corrosion behavior of a novel Cu-Mo weathering steel in an artificial marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 507
|
|
汪涵敏, 黄 峰, 袁 玮 等. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 507
doi: 10.11902/1005.4537.2022.170
|
[8] |
Liu T, Wang S M, Hou Y B, et al. Research status on surface rust layer stabilization of weathering steel [J]. Surf. Technol., 2018, 47(10): 240
|
|
刘 涛, 王胜民, 侯云波 等. 耐候钢表面锈层稳定化研究现状 [J]. 表面技术, 2018, 47(10): 240
|
[9] |
Zhong B, Xu X L, Chen Y Q, et al. Electrochemical impedance spectrum for corrosion of a weathering steel 09CuPCrNi-A in 3.5% NaCl solution [J]. Corros. Sci. Prot. Technol., 2011, 23: 437
|
|
钟 彬, 徐小连, 陈义庆 等. 09CuPCrNi-A耐大气腐蚀钢电化学阻抗研究 [J]. 腐蚀科学与防护技术, 2011, 23: 437
|
[10] |
Wang C S, Zhang J W, Duan L, et al. Research progress and engineering application of long lasting high performance weathering steel bridges [J]. J. Traffic Transp. Eng., 2020, 20(1): 1
|
|
王春生, 张静雯, 段 兰 等. 长寿命高性能耐候钢桥研究进展与工程应用 [J]. 交通运输工程学报, 2020, 20(1): 1
|
[11] |
Lin P F, Yang Z M, Chen Y, et al. Rust layer of weathering steel and its stabilization treatment status [J]. Iron Steel, 2021, 56(3): 58
|
|
林鹏飞, 杨忠民, 陈 颖 等. 耐候钢锈层及其稳定化处理现状 [J]. 钢铁, 2021, 56(3): 58
|
[12] |
Chen X P, Wang X D, Liu Q Y, et al. Anti-corrosion mechanism of rust layers with atmospheric corrosion resistance [J]. Corros. Prot., 2009, 30: 241
|
|
陈小平, 王向东, 刘清友 等. 耐候锈层的耐腐蚀机理研究 [J]. 腐蚀与防护, 2009, 30: 241
|
[13] |
Gao L J, Yang J W, Yu D Y, et al. A new rust stabilization treatment of weathering steel and its periodic immersed corrosion resistance in 3.5% NaCl solution [J]. Surf. Technol., 2017, 46(8): 234
|
|
高立军, 杨建炜, 于东云 等. 耐候钢新型表面锈层稳定剂处理及其耐3.5%NaCl溶液周浸腐蚀性能 [J]. 表面技术, 2017, 46(8): 234
|
[14] |
Liu T. Study on stabilization of rust layer on weathering steel surface and treatment fluid [D]. Kunming: Kunming University of Science and Technology, 2019
|
|
刘 涛. 耐候钢表面锈层稳定化及处理液的研究 [D]. 昆明: 昆明理工大学, 2019
|
[15] |
Liu L H, Li M, Li X G, et al. A new coating stabilizing surface rust of weathering steel [J]. Acta Metal. Sin., 2004, 40: 1195
|
|
刘丽宏, 李 明, 李晓刚 等. 耐候钢表面锈层稳定化处理用新型涂层研究 [J]. 金属学报, 2004, 40: 1195
|
[16] |
Zhang X, Yang S W, Zhang W H, et al. Corrosion behavior of low-alloy weathering steel in cyclically alternate corrosion environment [J]. Chin. J. Mater Res., 2013, 27: 18
|
|
张 旭, 杨善武, 张文华 等. 低合金耐候钢在周期性交替条件下的腐蚀行为 [J]. 材料研究学报, 2013, 27: 18
|
[17] |
Liu H, Yang S W, Zhang X, et al. Influence of surface pre-treatment on corrosion behavior of weathering steel [J]. Trans. Mater. Heat Treat., 2015, 36(5): 178
|
|
刘 弘, 杨善武, 张 旭 等. 耐候钢表面预处理对其腐蚀行为的影响 [J]. 材料热处理学报, 2015, 36(5): 178
|
[18] |
Yang Y. Corrosion mechanism of Sn/Sb-microalloyed 420MPa low-alloy steels in polluted marine atmosphere [D]. Beijing: University of Science and Technology Beijing, 2021
|
|
杨 颖. 锡和锑对污染海洋大气中420MPa低合金钢腐蚀的影响机理研究 [D]. 北京: 北京科技大学, 2021
|
[19] |
Qin J Z. Effect of deformation and oxygen content on FeO eutectoid reaction of oxide scale on high strength steel surface [D]. Wuhan: Wuhan University of Science and Technology, 2022
|
|
秦金柱. 形变及氧含量对高强钢表面氧化铁皮层FeO共析反应的影响 [D]. 武汉: 武汉科技大学, 2022
|
[20] |
Díaz I, Cano H, Lopesino P, et al. Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments [J]. Corros. Sci., 2018, 141: 146
|
[21] |
Nishikata A, Zhu Q J, Tada E. Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method [J]. Corros. Sci., 2014, 87: 80
|
[22] |
Liu H X. Study on effect of Si element on corrosion mechanism and atmospheric corrosion of 690MPa grade bridge steel [D]. Wuhan: Wuhan University of Science and Technology, 2020
|
|
刘海霞. Si元素对690MPa级桥梁钢耐蚀性作用机理及大气腐蚀行为研究 [D]. 武汉: 武汉科技大学, 2020
|
[23] |
Zhang Y W. A study on corrosion behavior of Q345q bridge steel in typical atmospheric environment in northwest China [D]. Lanzhou: Lanzhou University of Technology, 2019
|
|
张延文. 桥梁钢Q345q在西北典型大气环境中的腐蚀行为研究 [D]. 兰州: 兰州理工大学, 2019
|
[24] |
Cheng P, Liu J, Huang X Q, et al. Effect of silicon on the corrosion behaviour of 690 MPa weathering bridge steel in simulated industrial atmosphere [J]. Constr. Build. Mater., 2022, 328: 127030
|
[25] |
Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere [J]. Corros. Sci., 2021, 186: 109427
|
[26] |
Chen Y X. Effect of Cr on high humid and warm marine atmospheric corrosion resistance of weathering steel [D]. Beijing: China University of Petroleum, 2017
|
|
陈钰鑫. Cr对耐候钢在高湿热海洋大气环境下耐蚀性的影响规律 [D]. 北京: 中国石油大学(北京), 2017
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|