Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (4): 891-900    DOI: 10.11902/1005.4537.2023.288
Current Issue | Archive | Adv Search |
Effect of Rolling Scale on Evolution of Fast-stabilized Rust Layer and Corrosion Resistance of a Weathering Steel
ZHANG Jiawei1, HUANG Feng1(), WANG Hanmin1, LANG Fengjun2, YUAN Wei1, LIU Jing1
1. Hubei Engineering Technology Research Center of Marine Materials and Service Safety, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2. R&D Center of Wuhan Iron & Steel Co., Ltd., Baosteel Central Research Institute, Wuhan 430080, China
Cite this article: 

ZHANG Jiawei, HUANG Feng, WANG Hanmin, LANG Fengjun, YUAN Wei, LIU Jing. Effect of Rolling Scale on Evolution of Fast-stabilized Rust Layer and Corrosion Resistance of a Weathering Steel. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 891-900.

Download:  HTML  PDF(14272KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of mill scale on the evolution of the fast-stabilized rust layer and anti-corrosion performance of Q345qDNH weathering steel in industrial atmospheric environment was studied via real atmospheric exposure testing, field emission scanning electron microscope (FE-SEM), field emission electron probe (FE-EPMA), micro-Raman Spectrum and electrochemical technique. The results showed that the presence of Fe3O4, Fe2O3, a small amount of FeO and FeCr2O4 in the oxide scales could improve the compactness of the rust layer, but could not change the types of corrosion products of Q345qDNH weathering steel. The corrosion products of the bare steel and the steel with mill scale were mainly composed of γ-FeOOH, α-FeOOH and Fe3O4. In the three types of corrosion products, the propagation of α-FeOOH is an inward growing process. The steels with mill scales present better rust layer stabilization and corrosion resistance due to the existence of Fe3O4 in the mill scale could promote the formation of α-FeOOH.

Key words:  Q345qDNH weathering steel      oxidized scale      industrial atmospheric corrosion      stabilization treatment     
Received:  10 September 2023      32134.14.1005.4537.2023.288
ZTFLH:  TG174.4  
Fund: National Natural Science Foundation of China(U21A20113)
Corresponding Authors:  HUANG Feng, E-mail: huangfeng@wust.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.288     OR     https://www.jcscp.org/EN/Y2024/V44/I4/891

Fig.1  Metallographic microstructure of Q345qDNH weathering steel (etched by alcohol solution containing 4% nitric acid)
Fig.2  Surface (a) and cross-sectional (b) morphologies of Q345qDNH weathering steel with oxide scale
Fig.3  EBSD results of Q345qDNH weathering steel with oxide scale: (a) backscattering morphology, (b) phase diagram, (c) grain orientation distribution map, (d, e) EDS mappings of iron and oxygen respectively
Fig.4  Microstructures of the rust layers of Q345qDNH weathering steel after surface treatments by only rust formation (a) and stabilization (b), and exposure for 60 d (c) and 2 a (d)
Fig.5  Surface morphologies of Q345qDNH weathering steel with oxide scale after surface treatments by only rust formation (a) and stabilization (b), and exposure for 60 d (c) and 2 a (d)
Fig.6  Cross-sectional morphologies and corresponding EDS elemental mappings of Q345qDNH bare steel after surface treatments by only rust formation (a) and stabilization (b), and exposure for 60 d (c) and 2 a (d)
Fig.7  Cross-sectional morphologies and corresponding EDS elemental mappings of Q345qDNH steel with oxide scale after surface treatments by only rust formation (a) and stabilization (b), and exposure for 60 d (c) and 2 a (d)
Fig.8  Raman spectra along the depths of the rust layers of Q345qDNH bare steel after surface treatments by only rust formation (a) and stabilization (b), and exposure for 60 d (c) and 2 a (d)
Fig.9  Raman spectra along the depths of the rust layers of Q345qDNH weathering steel with oxide scale after surface treatments by only rust formation (a) and stabilization (b), and exposure for 60 d (c) and 2 a (d)
Fig.10  Linear polarization curves of treated Q345qDNH weathering steel without (a) and with (b) oxide scale in 0.01mol/L NaHSO3 solution
Fig.11  Fitting values of linear polarization resistances of various samples in Fig.10
Fig.12  Schematic diagrams of rapid formation of stable rust layer of Q345qDNH weathering steel without (a) and with (b) oxide scale in simulated industrial atmosphere
[1] Lin P F, Yang Z M, Chen Y, et al. Development of a Cr series surface rust layer stabilizer of weather resistant steels [J]. Corros. Prot., 2023, 44(3): 39
林鹏飞, 杨忠民, 陈 颖 等. 一种Cr系耐候钢表面锈层稳定剂的研发 [J]. 腐蚀与防护, 2023, 44(3): 39
[2] Shi J, Hu X W, He B, et al. Surface stabilization and rust structure of weathering steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 856
石 践, 胡学文, 何 博 等. 耐候钢表面稳定化处理及锈层结构研究 [J]. 中国腐蚀与防护学报, 2022, 42: 856
[3] Morcillo M, Díaz I, Chico B, et al. Weathering steels: From empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83: 6
[4] Oh S J, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine, rural and industrial environments [J]. Corros. Sci., 1999, 41: 1687
[5] Shi Z J, Wang L, Chen N, et al. Research status and development on surface rust layer and stabilizing treatment of weathering steels [J]. Corros. Sci. Prot. Technol., 2015, 27: 503
石振家, 王 雷, 陈 楠 等. 耐候钢表面锈层及其稳定化处理现状与发展趋势 [J]. 腐蚀科学与防护技术, 2015, 27: 503
doi: 10.11903/1002.6495.2014.363
[6] Liu H X, Huang F, Yuan W, et al. Corrosion behavior of 690 MPa grade high strength bainite steel in a simulated rural atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 416
刘海霞, 黄 峰, 袁 玮 等. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2020, 40: 416
doi: 10.11902/1005.4537.2020.002
[7] Wang H M, Huang F, Yuan W, et al. Corrosion behavior of a novel Cu-Mo weathering steel in an artificial marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 507
汪涵敏, 黄 峰, 袁 玮 等. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 507
doi: 10.11902/1005.4537.2022.170
[8] Liu T, Wang S M, Hou Y B, et al. Research status on surface rust layer stabilization of weathering steel [J]. Surf. Technol., 2018, 47(10): 240
刘 涛, 王胜民, 侯云波 等. 耐候钢表面锈层稳定化研究现状 [J]. 表面技术, 2018, 47(10): 240
[9] Zhong B, Xu X L, Chen Y Q, et al. Electrochemical impedance spectrum for corrosion of a weathering steel 09CuPCrNi-A in 3.5% NaCl solution [J]. Corros. Sci. Prot. Technol., 2011, 23: 437
钟 彬, 徐小连, 陈义庆 等. 09CuPCrNi-A耐大气腐蚀钢电化学阻抗研究 [J]. 腐蚀科学与防护技术, 2011, 23: 437
[10] Wang C S, Zhang J W, Duan L, et al. Research progress and engineering application of long lasting high performance weathering steel bridges [J]. J. Traffic Transp. Eng., 2020, 20(1): 1
王春生, 张静雯, 段 兰 等. 长寿命高性能耐候钢桥研究进展与工程应用 [J]. 交通运输工程学报, 2020, 20(1): 1
[11] Lin P F, Yang Z M, Chen Y, et al. Rust layer of weathering steel and its stabilization treatment status [J]. Iron Steel, 2021, 56(3): 58
林鹏飞, 杨忠民, 陈 颖 等. 耐候钢锈层及其稳定化处理现状 [J]. 钢铁, 2021, 56(3): 58
[12] Chen X P, Wang X D, Liu Q Y, et al. Anti-corrosion mechanism of rust layers with atmospheric corrosion resistance [J]. Corros. Prot., 2009, 30: 241
陈小平, 王向东, 刘清友 等. 耐候锈层的耐腐蚀机理研究 [J]. 腐蚀与防护, 2009, 30: 241
[13] Gao L J, Yang J W, Yu D Y, et al. A new rust stabilization treatment of weathering steel and its periodic immersed corrosion resistance in 3.5% NaCl solution [J]. Surf. Technol., 2017, 46(8): 234
高立军, 杨建炜, 于东云 等. 耐候钢新型表面锈层稳定剂处理及其耐3.5%NaCl溶液周浸腐蚀性能 [J]. 表面技术, 2017, 46(8): 234
[14] Liu T. Study on stabilization of rust layer on weathering steel surface and treatment fluid [D]. Kunming: Kunming University of Science and Technology, 2019
刘 涛. 耐候钢表面锈层稳定化及处理液的研究 [D]. 昆明: 昆明理工大学, 2019
[15] Liu L H, Li M, Li X G, et al. A new coating stabilizing surface rust of weathering steel [J]. Acta Metal. Sin., 2004, 40: 1195
刘丽宏, 李 明, 李晓刚 等. 耐候钢表面锈层稳定化处理用新型涂层研究 [J]. 金属学报, 2004, 40: 1195
[16] Zhang X, Yang S W, Zhang W H, et al. Corrosion behavior of low-alloy weathering steel in cyclically alternate corrosion environment [J]. Chin. J. Mater Res., 2013, 27: 18
张 旭, 杨善武, 张文华 等. 低合金耐候钢在周期性交替条件下的腐蚀行为 [J]. 材料研究学报, 2013, 27: 18
[17] Liu H, Yang S W, Zhang X, et al. Influence of surface pre-treatment on corrosion behavior of weathering steel [J]. Trans. Mater. Heat Treat., 2015, 36(5): 178
刘 弘, 杨善武, 张 旭 等. 耐候钢表面预处理对其腐蚀行为的影响 [J]. 材料热处理学报, 2015, 36(5): 178
[18] Yang Y. Corrosion mechanism of Sn/Sb-microalloyed 420MPa low-alloy steels in polluted marine atmosphere [D]. Beijing: University of Science and Technology Beijing, 2021
杨 颖. 锡和锑对污染海洋大气中420MPa低合金钢腐蚀的影响机理研究 [D]. 北京: 北京科技大学, 2021
[19] Qin J Z. Effect of deformation and oxygen content on FeO eutectoid reaction of oxide scale on high strength steel surface [D]. Wuhan: Wuhan University of Science and Technology, 2022
秦金柱. 形变及氧含量对高强钢表面氧化铁皮层FeO共析反应的影响 [D]. 武汉: 武汉科技大学, 2022
[20] Díaz I, Cano H, Lopesino P, et al. Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments [J]. Corros. Sci., 2018, 141: 146
[21] Nishikata A, Zhu Q J, Tada E. Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method [J]. Corros. Sci., 2014, 87: 80
[22] Liu H X. Study on effect of Si element on corrosion mechanism and atmospheric corrosion of 690MPa grade bridge steel [D]. Wuhan: Wuhan University of Science and Technology, 2020
刘海霞. Si元素对690MPa级桥梁钢耐蚀性作用机理及大气腐蚀行为研究 [D]. 武汉: 武汉科技大学, 2020
[23] Zhang Y W. A study on corrosion behavior of Q345q bridge steel in typical atmospheric environment in northwest China [D]. Lanzhou: Lanzhou University of Technology, 2019
张延文. 桥梁钢Q345q在西北典型大气环境中的腐蚀行为研究 [D]. 兰州: 兰州理工大学, 2019
[24] Cheng P, Liu J, Huang X Q, et al. Effect of silicon on the corrosion behaviour of 690 MPa weathering bridge steel in simulated industrial atmosphere [J]. Constr. Build. Mater., 2022, 328: 127030
[25] Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere [J]. Corros. Sci., 2021, 186: 109427
[26] Chen Y X. Effect of Cr on high humid and warm marine atmospheric corrosion resistance of weathering steel [D]. Beijing: China University of Petroleum, 2017
陈钰鑫. Cr对耐候钢在高湿热海洋大气环境下耐蚀性的影响规律 [D]. 北京: 中国石油大学(北京), 2017
[1] LI Hongling, LANG Wuke. Environmentally Friendly Anticorrosive Materials-Preparation and Research Progress of Polyaniline Nanocomposites[J]. 中国腐蚀与防护学报, 2024, 44(4): 874-882.
[2] TIAN Mengzhen, WANG Yong, LI Tao, WANG Chuan, GUO Quanzhong, GUO Jianxi. Effect of Electrical Parameters on Energy Consumption and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[3] LI Zhuoxuan, CAO Yanhui, LI Chongjie, LI Hui, ZHANG Xiaoming, YONG Xingyue. Relationship Between Corrosion Failure Degree of Organic Coatings and Mechanical Properties for Dissimilar Metal Assamblies[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[4] LI Gangqing, LIU Xi, SUN Xiaoguang, PAN Jinglong, CAO Xiangkang, DONG Zehua. Research Progress on Trigger Mechanism and Preparation Strategy of Coatings of Defect Self-disclosure[J]. 中国腐蚀与防护学报, 2024, 44(3): 540-552.
[5] FAN Yufang, ZHANG Yafei, YIN Liusen, ZHAO Conghui, HE Yanbin, ZHANG Chuanxiang. Research Progress on Carbon Dots in Field of Metal Corrosion and Protection[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[6] YAO Yong, LIU Guojun, LI Shizhu, LIU Miaoran, CHEN Chuan, HUANG Tingcheng, LIN Hai, LI Zhanjiang, LIU Yuwei, WANG Zhenyao. Research Progress on Corrosion Prediction Model of Metallic Materials for Electrical Equipment[J]. 中国腐蚀与防护学报, 2023, 43(5): 983-991.
[7] LI Shuli, DENG Shuduan, LI Xianghong. Research Progress and Prospects of Plant Corrosion Inhibitors for Aluminum[J]. 中国腐蚀与防护学报, 2023, 43(5): 929-947.
[8] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[9] LI Haiyan, LIU Huan, WANG Geyi, ZHANG Xiuju, CHEN Tongzhou, YU Yun, YAO Hong. Review on Erosion-wear and Protection of Heat Exchange Surface in Power Station Boilers[J]. 中国腐蚀与防护学报, 2023, 43(5): 957-970.
[10] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[11] CHEN Qingguo, TANG Quanhong, QIN Zhenjie, LI Yifan, LI Lei, LI Xuanpeng, YUAN Juntao, SU Hang, FU Anqing. Corrosion Behavior of Hot-dip Aluminum Coating in “High Temperature-salt Deposited-CO2/O2” Multi-degree Coupling Environment[J]. 中国腐蚀与防护学报, 2023, 43(3): 569-577.
[12] YANG Xinyu, LI Zhen, DUAN Tigang, HUANG Guosheng, MA Li, LIU Feng, JIANG Dan. Erosion Corrosion Behavior in Flowing Seawater for 70Cu-30Ni Alloy Pipelines with Chemical Conversion Film Preformed in Flowing FeSO4 Solution[J]. 中国腐蚀与防护学报, 2023, 43(3): 561-568.
[13] LIAN Yubo, ZHANG Qingzhu, HAN Chuanghui, LI Wenjuan, WENG Huatao, JIANG Wei. Inhibition Behavior of a Nano-corrosion Inhibitor Capsule Prepared from MOFs and BTA for Copper[J]. 中国腐蚀与防护学报, 2022, 42(6): 1058-1064.
[14] LIU Yuxiang, XU Anyang. Characterization of Pitting Corrosion Behavior of AZ91 Mg-alloy without and with MAO Coating[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.
[15] LI Yuqiao, SI Weiting, GAO Rongjie. Preparation of Superamphiphobic Surface on Al-alloy and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(6): 966-972.
No Suggested Reading articles found!