Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (2): 445-452    DOI: 10.11902/1005.4537.2023.165
Current Issue | Archive | Adv Search |
Initial Oxidation Behavior of Pure Iron in a Simulated Combustion Environment Containing Gasoline
LAI Tian1,2, XIE Dongbai2(), DUO Shuwang1, HONG Hao3, ZHANG Hao1, TANG Zhijie1
1.Jiangxi Key Laboratory of Materials Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
2.University Featured Laboratory of Materials Engineering for Agricultural Machinery of Shandong Province, Weifang University of Science and Technology, Shouguang 262700, China
3.State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
Cite this article: 

LAI Tian, XIE Dongbai, DUO Shuwang, HONG Hao, ZHANG Hao, TANG Zhijie. Initial Oxidation Behavior of Pure Iron in a Simulated Combustion Environment Containing Gasoline. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 445-452.

Download:  HTML  PDF(8911KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To address the issue of low content of accelerant residues at the fire site due to combustion, volatilization and site contamination, which leads to difficulties in identification. In this study, n-heptane was used to simulate the fire site environment of gasoline as an accelerant. To perform the experiments, a pipette was adopted to monitor and generate a specific number of n-heptane drops onto the surface of a pure iron plate just beneath, the n-heptane was then ignited, after the combustion was completed the iron plate was soon cooling down to room temperature at the site. The microscopic morphology and phase composition of the corrosion products, as well as the distribution of surface particles were characterized by means of scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) etc. The results showed that: Upon combustion of n-heptane, granular amorphous carbon is observed on the surface of pure iron as a result of high-temperature cracking reaction. The amount of deposited carbon is closely linked to the surface temperature of pure iron and n-heptane content at the site, and tends to accumulate at defects and nearby grain boundaries of the pure iron plate. The combustion of n-heptane creates a local oxidizing atmosphere at the accelerant interface, resulting in numerous defects on the surface of pure iron. This, in turn, promotes the flaking of the surface oxide scale. The insights gained in this study can help to identify the presence of accelerant at the fire scene.

Key words:  fire investigation      n-heptane      accelerant      simulated combustion      oxidation     
Received:  19 May 2023      32134.14.1005.4537.2023.165
ZTFLH:  TG172  
Fund: Opening Foundation of Jiangxi Key Laboratory of Surface Engineering(2021CLKF002)
Corresponding Authors:  XIE Dongbai, E-mail: dbxie@aliyun.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.165     OR     https://www.jcscp.org/EN/Y2024/V44/I2/445

Fig.1  Schematic diagram of the simulated fire scene combustion experiment
Fig.2  Surface temperatures of pure Fe in simulated fire scene combustion environment with the accelerant contents of 20 μL (a), 40 μL (b), 80 μL (c), 150 μL (d) and 250 μL (e)
Fig.3  Surface morphologies of pure Fe after exposure in combustion environments with different contents of n-heptane: (a) 0 μL, (b) 20 μL, (c) 40 μL, (d) 80 μL, (e) 150 μL, (f) 250 μL
Fig.4  AFM results of the surfaces of pure Fe after exposure in combustion environments with different contents of n-heptane: (a) 0 μL, (b) 20 μL, (c) 40 μL, (d) 80 μL, (e) 150 μL, (f) 250 μL
Fig.5  XPS spectra of the surfaces of pure Fe after exposure in combustion environment with 250 μL n-heptane : (a) XPS survey, (b) Fe 2p3/2, (c) O 1s, (d) C 1s
AreaElement contentCOFe
1Mass fraction, %9.83.3286.88
Atomic fraction, %31.638.0460.33
2Mass fraction, %58.462.7538.79
Atomic fraction, %84.892.9912.11
Table 1  EDS results of the regions 1 and 2 marked in Fig.6
Fig.6  SEM surface images of pure Fe after exposure in combustion environments with different contents of n-heptane : (a, b) 20 μL, (c) 40 μL, (d-f) 80 μL, (g, h) 150 μL, (i) 250 μL
Fig.7  Optical microscope photographs of pure Fe before (a) and after (b) exposure in combustion environment with 80 μL n-heptane
1 Sun Z W, Shi Y, Zhang G N, et al. Key factors about fire investigation: evolving mechanism-based utilization into reverse deduction[J]. Forensic Sci. Technol., 2022, 47: 261
孙振文, 石屹, 张冠男 等. 火灾调查中的关键要素演变及逆向推演[J]. 刑事技术, 2022, 47: 261
2 Baerncopf J, Hutches K. A review of modern challenges in fire debris analysis[J]. Forensic Sci. Int., 2014, 244: e12
doi: 10.1016/j.forsciint.2014.08.006
3 Nicdaéid N. Analysis of fire debris[A]. Houck M M. Encyclopedia of Forensic Sciences[M]. 3rd ed. London: Elsevier, 2023: 126
4 Martín-Alberca C, Ortega-Ojeda F E, García-Ruiz C. Analytical tools for the analysis of fire debris. A review: 2008-2015[J]. Anal. Chim. Acta, 2016, 928: 1
doi: S0003-2670(16)30549-9 pmid: 27251852
5 Pasternak Z, Avissar Y Y, Ehila F, et al. Automatic detection and classification of ignitable liquids from GC-MS data of casework samples in forensic fire-debris analysis[J]. Forensic Chem., 2022, 29: 100419
doi: 10.1016/j.forc.2022.100419
6 Low Y, Tyrrell E, Gillespie E, et al. Review: Recent advancements and moving trends in chemical analysis of fire debris[J]. Forensic Sci. Int., 2023, 345: 111623
doi: 10.1016/j.forsciint.2023.111623
7 Fernandes M S, Lau C M, Wong W C. The effect of volatile residues in burnt household items on the detection of fire accelerants[J]. Sci. Justice, 2002, 42: 7
doi: 10.1016/S1355-0306(02)71791-7
8 Almirall J R, Furton K G. Analysis and Interpretation of Fire Scene Evidence[M]. Boca Raton: CRC Press, 2004
9 Conner L, Chin S, Furton K G. Evaluation of field sampling techniques including electronic noses and a dynamic headspace sampler for use in fire investigations[J]. Sens. Actuators, 2006, 116B: 121
10 Xie D B, Shan G, Deng S, et al. Investigations on oxidation and microstructure evolution of pure Cu in simulated air-kerosene combustion atmospheres[J]. Fire Mater., 2017, 41: 614
doi: 10.1002/fam.v41.6
11 Xie D B, Shan G, Lv S L. Oxidation behavior of carbon steel in simulated kerosene combustion atmosphere: A valuable tool for fire investigations[J]. Fire Mater., 2018, 42: 156
doi: 10.1002/fam.v42.2
12 Xie D B, Wang W, Lv S L, et al. Effect of simulated combustion atmospheres on oxidation and microstructure evolution of aluminum alloy 5052[J]. Fire Mater., 2018, 42: 278
doi: 10.1002/fam.v42.3
13 Hong H, Xie D B, Duo S, et al. Investigating the oxidation behavior of carbon steel in fire scene: a new method for fire investigations[J]. ScienceAsia, 2020, 46: 59
doi: 10.2306/scienceasia1513-1874.2020.005
14 Xie D B, Hong H, Duo S, et al. Effect of kerosene combustion atmosphere on the mild steel oxide layer[J]. Sci. Rep., 2022, 12: 379
doi: 10.1038/s41598-021-04377-3 pmid: 35013478
15 López D A, Schreiner W H, de Sánchez S R, et al. The influence of carbon steel microstructure on corrosion layers: An XPS and SEM characterization[J]. Appl. Surf. Sci., 2003, 207: 69
doi: 10.1016/S0169-4332(02)01218-7
16 Lin S, Xu X J, Hu H J. Investigation on arson cases[J]. Fire Sci. Technol., 2009, 28: 621
林 松, 徐学军, 胡鸿俊. 放火案件调查[J]. 消防科学与技术, 2009, 28: 621
17 Gong J, Jin J, Zhang J Z, et al. Research progress on characteristics of combustion improver trace on the arson fire scene[J]. Fire Sci. Technol., 2021, 40: 594
龚 靳, 金 静, 张金专 等. 放火现场助燃剂燃烧痕迹特征研究进展[J]. 消防科学与技术, 2021, 40: 594
18 Huo E G, Zhang S J, Xin L Y, et al. Pyrolysis mechanism study of n-heptane as an endothermic hydrocarbon fuel: A reactive molecular dynamic simulation and density functional theory calculation study[J]. Comput. Theor. Chem., 2022, 1211: 113696
doi: 10.1016/j.comptc.2022.113696
19 Ding J X, Zhang L, Han K L. Thermal rate constants of the pyrolysis of n-Heptane[J]. Combust. Flame, 2011, 158: 2314
doi: 10.1016/j.combustflame.2011.04.015
20 Hong H, Duo S W, Xie D B. Oxidation behavior of Q235 carbon steel in ethanol combustion gas[J]. Corros. Sci. Prot. Technol., 2019, 31: 212
洪 昊, 多树旺, 谢冬柏. 乙醇助燃剂燃烧环境中Q235碳钢的氧化行为研究[J]. 腐蚀科学与防护技术, 2019, 31: 212
21 Bockhorn H. Soot Formation in Combustion: Mechanisms and Models[M]. Berlin, Heidelberg: Springer, 1994
22 Wang H, Frenklach M. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames[J]. Combust. Flame, 1997, 110: 173
doi: 10.1016/S0010-2180(97)00068-0
23 Frenklach M, Wang H. Detailed modeling of soot particle nucleation and growth[J]. Symp. (Int.) Combust., 1991, 23: 1559
doi: 10.1016/S0082-0784(06)80426-1
24 Wang Y, Chung S H. Soot formation in laminar counterflow flames[J]. Prog. Energy Combust. Sci., 2019, 74: 152
doi: 10.1016/j.pecs.2019.05.003
25 Young D J. Carburization and metal dusting[A]. CottisB, GrahamM, LindsayR, et al. Shreir's Corrosion[M]. Oxford: Elsevier, 2010: 272
26 Liu Q Y, Hu L, Deng L, et al. Study on fire behavior of cardboard box and n-heptane in confined space[J]. J. Zhejiang Univ. Technol., 2020, 48: 664
刘全义, 胡 林, 邓 力 等. 受限空间内正庚烷与瓦楞纸箱的火行为研究[J]. 浙江工业大学学报, 2020, 48: 664
27 Hillert M, Selleby M. Discussion of cementite layer formation and sooting[J]. Scr. Mater., 2010, 63: 1037
doi: 10.1016/j.scriptamat.2010.07.013
28 Xie D B, Shan G. Rapid identification of liquid accelerant in fire scene environment[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 74
谢冬柏, 单 国. 燃油火场环境中助燃剂的快速检验方法研究[J]. 中国腐蚀与防护学报, 2017, 37: 74
doi: 10.11902/1005.4537.2016.154
[1] WANG Tongtong, ZHANG Juanrui, GAO Yun, GAO Rongjie. Preparation of Lotus Root-like TiO2 Nanotube Arrays in NH4F-(NH4)2SO4 Composite Electrolyte and Its Photogenerated Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2024, 44(2): 389-395.
[2] LIANG Zhiyuan, ZHANG Chao, QU Jinyu, HE Jianyuan, GUO Tingshan, XU Yiming. Oxidation Behavior in Air-steam Mixed Atmosphere at 1000oC of Four Typical High-temperature Alloys for Gas Turbine[J]. 中国腐蚀与防护学报, 2024, 44(2): 355-364.
[3] WANG Shuang, WANG Zixing, CHENG Xiaonong, LUO Rui. Effect of Rare Earth La on High Temperature Oxidation of Cobalt-based Superalloy GH5188 at 1100oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 221-228.
[4] FENG Kangkang, REN Yanjie, LV Yunlei, ZHOU Mengni, CHEN Jian, NIU Yan. Effect of Si Content on Oxidation Behavior of Quaternary Fe-20Ni-20Cr- ySi Alloys in Oxygen at 900oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 100-106.
[5] YUAN Xiaohu, LI Dingjun, WANG Tianjian, GUO Xianping, ZHANG Naiqiang, ZHU Zhongliang. Oxidation Behavior of Three Different Ni-Cr Coatings in 630oC/25 MPa Supercritical Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 119-129.
[6] JIANG Guangrui, LIU Guanghui, SHANG Ting. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of ZnAlMg Coating[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
[7] YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang. Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[8] REN Yan, ZHANG Xintao, GAI Xin, XU Jingjun, ZHANG Wei, CHEN Yong, LI Meishuan. High Temperature Oxidation Behavior of Quaternary (Cr2/3Ti1/3)3AlC2 MAX Ceramic in Air and Steam[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[9] WANG Junyang, YI Gewen, WAN Shanhong, JIANG Jun. Research Progress on Structural Evolution and Applied Control Technology of Oxide Scale on Hot Rolled Steel Surface[J]. 中国腐蚀与防护学报, 2023, 43(5): 948-956.
[10] YU Bo, LI Zhang, ZHOU Kaixuan, TIAN Haoliang, FANG Yongchao, ZHANG Xiaomin, JIN Guo. High-temperature Performance of MoSi2 Modified YGYZ Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[11] YUAN Lei, XIE Xin, CHEN Minghui, LI Fengjie, WANG Fuhui. Air Oxidation and NaCl Corrosion Behavior of 20 Steel Without and with Enamel Coating at 400 °C[J]. 中国腐蚀与防护学报, 2023, 43(4): 890-895.
[12] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[13] LIU Shuyu, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, DUAN Haitao, XIA Siyao, XIA Chunhuai. High Temperature Oxidation and Solid Na2SO4 Induced Corrosion of CVD Aluminide Coating on K444 Alloy in Air[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[14] HE Nankai, WANG Yongxin, ZHOU Shengguo, ZHOU Dapeng, LI Jinlong. Oxidation Behavior in Water Vapor and Tribological Property in Atmosphere with 60%Relative Humidity at 580 ℃ for Inconel 718 Alloy[J]. 中国腐蚀与防护学报, 2023, 43(2): 271-279.
[15] LIU Huanhuan, LIU Guangming, LI Futian, MENG Lingqi, XIAHOU Junzhao, GU Jialei. Oxidation Behavior of TP439 Stainless Steel in Water Vapor at 800 ℃[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
No Suggested Reading articles found!