|
|
|
| Initial Oxidation Behavior of Pure Iron in a Simulated Combustion Environment Containing Gasoline |
LAI Tian1,2, XIE Dongbai2( ), DUO Shuwang1, HONG Hao3, ZHANG Hao1, TANG Zhijie1 |
1.Jiangxi Key Laboratory of Materials Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China 2.University Featured Laboratory of Materials Engineering for Agricultural Machinery of Shandong Province, Weifang University of Science and Technology, Shouguang 262700, China 3.State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China |
|
Cite this article:
LAI Tian, XIE Dongbai, DUO Shuwang, HONG Hao, ZHANG Hao, TANG Zhijie. Initial Oxidation Behavior of Pure Iron in a Simulated Combustion Environment Containing Gasoline. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 445-452.
|
|
|
Abstract To address the issue of low content of accelerant residues at the fire site due to combustion, volatilization and site contamination, which leads to difficulties in identification. In this study, n-heptane was used to simulate the fire site environment of gasoline as an accelerant. To perform the experiments, a pipette was adopted to monitor and generate a specific number of n-heptane drops onto the surface of a pure iron plate just beneath, the n-heptane was then ignited, after the combustion was completed the iron plate was soon cooling down to room temperature at the site. The microscopic morphology and phase composition of the corrosion products, as well as the distribution of surface particles were characterized by means of scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) etc. The results showed that: Upon combustion of n-heptane, granular amorphous carbon is observed on the surface of pure iron as a result of high-temperature cracking reaction. The amount of deposited carbon is closely linked to the surface temperature of pure iron and n-heptane content at the site, and tends to accumulate at defects and nearby grain boundaries of the pure iron plate. The combustion of n-heptane creates a local oxidizing atmosphere at the accelerant interface, resulting in numerous defects on the surface of pure iron. This, in turn, promotes the flaking of the surface oxide scale. The insights gained in this study can help to identify the presence of accelerant at the fire scene.
|
|
Received: 19 May 2023
32134.14.1005.4537.2023.165
|
|
|
| Fund: Opening Foundation of Jiangxi Key Laboratory of Surface Engineering(2021CLKF002) |
Corresponding Authors:
XIE Dongbai, E-mail: dbxie@aliyun.com
|
| 1 |
Sun Z W, Shi Y, Zhang G N, et al. Key factors about fire investigation: evolving mechanism-based utilization into reverse deduction[J]. Forensic Sci. Technol., 2022, 47: 261
|
|
孙振文, 石屹, 张冠男 等. 火灾调查中的关键要素演变及逆向推演[J]. 刑事技术, 2022, 47: 261
|
| 2 |
Baerncopf J, Hutches K. A review of modern challenges in fire debris analysis[J]. Forensic Sci. Int., 2014, 244: e12
doi: 10.1016/j.forsciint.2014.08.006
|
| 3 |
Nicdaéid N. Analysis of fire debris[A]. Houck M M. Encyclopedia of Forensic Sciences[M]. 3rd ed. London: Elsevier, 2023: 126
|
| 4 |
Martín-Alberca C, Ortega-Ojeda F E, García-Ruiz C. Analytical tools for the analysis of fire debris. A review: 2008-2015[J]. Anal. Chim. Acta, 2016, 928: 1
doi: S0003-2670(16)30549-9
pmid: 27251852
|
| 5 |
Pasternak Z, Avissar Y Y, Ehila F, et al. Automatic detection and classification of ignitable liquids from GC-MS data of casework samples in forensic fire-debris analysis[J]. Forensic Chem., 2022, 29: 100419
doi: 10.1016/j.forc.2022.100419
|
| 6 |
Low Y, Tyrrell E, Gillespie E, et al. Review: Recent advancements and moving trends in chemical analysis of fire debris[J]. Forensic Sci. Int., 2023, 345: 111623
doi: 10.1016/j.forsciint.2023.111623
|
| 7 |
Fernandes M S, Lau C M, Wong W C. The effect of volatile residues in burnt household items on the detection of fire accelerants[J]. Sci. Justice, 2002, 42: 7
doi: 10.1016/S1355-0306(02)71791-7
|
| 8 |
Almirall J R, Furton K G. Analysis and Interpretation of Fire Scene Evidence[M]. Boca Raton: CRC Press, 2004
|
| 9 |
Conner L, Chin S, Furton K G. Evaluation of field sampling techniques including electronic noses and a dynamic headspace sampler for use in fire investigations[J]. Sens. Actuators, 2006, 116B: 121
|
| 10 |
Xie D B, Shan G, Deng S, et al. Investigations on oxidation and microstructure evolution of pure Cu in simulated air-kerosene combustion atmospheres[J]. Fire Mater., 2017, 41: 614
doi: 10.1002/fam.v41.6
|
| 11 |
Xie D B, Shan G, Lv S L. Oxidation behavior of carbon steel in simulated kerosene combustion atmosphere: A valuable tool for fire investigations[J]. Fire Mater., 2018, 42: 156
doi: 10.1002/fam.v42.2
|
| 12 |
Xie D B, Wang W, Lv S L, et al. Effect of simulated combustion atmospheres on oxidation and microstructure evolution of aluminum alloy 5052[J]. Fire Mater., 2018, 42: 278
doi: 10.1002/fam.v42.3
|
| 13 |
Hong H, Xie D B, Duo S, et al. Investigating the oxidation behavior of carbon steel in fire scene: a new method for fire investigations[J]. ScienceAsia, 2020, 46: 59
doi: 10.2306/scienceasia1513-1874.2020.005
|
| 14 |
Xie D B, Hong H, Duo S, et al. Effect of kerosene combustion atmosphere on the mild steel oxide layer[J]. Sci. Rep., 2022, 12: 379
doi: 10.1038/s41598-021-04377-3
pmid: 35013478
|
| 15 |
López D A, Schreiner W H, de Sánchez S R, et al. The influence of carbon steel microstructure on corrosion layers: An XPS and SEM characterization[J]. Appl. Surf. Sci., 2003, 207: 69
doi: 10.1016/S0169-4332(02)01218-7
|
| 16 |
Lin S, Xu X J, Hu H J. Investigation on arson cases[J]. Fire Sci. Technol., 2009, 28: 621
|
|
林 松, 徐学军, 胡鸿俊. 放火案件调查[J]. 消防科学与技术, 2009, 28: 621
|
| 17 |
Gong J, Jin J, Zhang J Z, et al. Research progress on characteristics of combustion improver trace on the arson fire scene[J]. Fire Sci. Technol., 2021, 40: 594
|
|
龚 靳, 金 静, 张金专 等. 放火现场助燃剂燃烧痕迹特征研究进展[J]. 消防科学与技术, 2021, 40: 594
|
| 18 |
Huo E G, Zhang S J, Xin L Y, et al. Pyrolysis mechanism study of n-heptane as an endothermic hydrocarbon fuel: A reactive molecular dynamic simulation and density functional theory calculation study[J]. Comput. Theor. Chem., 2022, 1211: 113696
doi: 10.1016/j.comptc.2022.113696
|
| 19 |
Ding J X, Zhang L, Han K L. Thermal rate constants of the pyrolysis of n-Heptane[J]. Combust. Flame, 2011, 158: 2314
doi: 10.1016/j.combustflame.2011.04.015
|
| 20 |
Hong H, Duo S W, Xie D B. Oxidation behavior of Q235 carbon steel in ethanol combustion gas[J]. Corros. Sci. Prot. Technol., 2019, 31: 212
|
|
洪 昊, 多树旺, 谢冬柏. 乙醇助燃剂燃烧环境中Q235碳钢的氧化行为研究[J]. 腐蚀科学与防护技术, 2019, 31: 212
|
| 21 |
Bockhorn H. Soot Formation in Combustion: Mechanisms and Models[M]. Berlin, Heidelberg: Springer, 1994
|
| 22 |
Wang H, Frenklach M. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames[J]. Combust. Flame, 1997, 110: 173
doi: 10.1016/S0010-2180(97)00068-0
|
| 23 |
Frenklach M, Wang H. Detailed modeling of soot particle nucleation and growth[J]. Symp. (Int.) Combust., 1991, 23: 1559
doi: 10.1016/S0082-0784(06)80426-1
|
| 24 |
Wang Y, Chung S H. Soot formation in laminar counterflow flames[J]. Prog. Energy Combust. Sci., 2019, 74: 152
doi: 10.1016/j.pecs.2019.05.003
|
| 25 |
Young D J. Carburization and metal dusting[A]. CottisB, GrahamM, LindsayR, et al. Shreir's Corrosion[M]. Oxford: Elsevier, 2010: 272
|
| 26 |
Liu Q Y, Hu L, Deng L, et al. Study on fire behavior of cardboard box and n-heptane in confined space[J]. J. Zhejiang Univ. Technol., 2020, 48: 664
|
|
刘全义, 胡 林, 邓 力 等. 受限空间内正庚烷与瓦楞纸箱的火行为研究[J]. 浙江工业大学学报, 2020, 48: 664
|
| 27 |
Hillert M, Selleby M. Discussion of cementite layer formation and sooting[J]. Scr. Mater., 2010, 63: 1037
doi: 10.1016/j.scriptamat.2010.07.013
|
| 28 |
Xie D B, Shan G. Rapid identification of liquid accelerant in fire scene environment[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 74
|
|
谢冬柏, 单 国. 燃油火场环境中助燃剂的快速检验方法研究[J]. 中国腐蚀与防护学报, 2017, 37: 74
doi: 10.11902/1005.4537.2016.154
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|