Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (2): 453-461    DOI: 10.11902/1005.4537.2023.077
Current Issue | Archive | Adv Search |
Oil Soluble Mannich Base Corrosion Inhibitor for Corrosion Inhibition of Copper in Transformer Oil
ZHOU Wenbin, LI Mengran, ZHOU Xin(), SUN Haijing, SUN Jie
School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110059, China
Cite this article: 

ZHOU Wenbin, LI Mengran, ZHOU Xin, SUN Haijing, SUN Jie. Oil Soluble Mannich Base Corrosion Inhibitor for Corrosion Inhibition of Copper in Transformer Oil. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 453-461.

Download:  HTML  PDF(6846KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

An oil-soluble Mannich base corrosion inhibitor (OMB) was synthesized from formaldehyde, dodecylamine and acetone, and which then was characterized by Fourier transform infrared spectroscopy (FT-IR). The corrosion inhibition effect of OMB and barium petroleum sulfonate (T701) on copper in 25# transformer oil was comparatively assessed by means of salt spray test, scanning electron microscopy (SEM) and atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). According to the quantum chemical calculation (Gaussian 09), molecular dynamics simulation (M-S) and Langmuir isothermal adsorption equation, the corrosion inhibition mechanism of OMB on copper was further discussed. The results show that OMB is a corrosion inhibitor with excellent corrosion inhibition effect on copper in salt spray test. The adsorption behavior of OMB on copper surface is spontaneous adsorption, which accords with mixed adsorption law and is mainly chemical adsorption, and the OMB moleculars are adsorbed parallel to the surface of copper.

Key words:  mannich bases      corrosion inhibition behavior      quantum chemistry      molecular dynamics     
Received:  21 March 2023      32134.14.1005.4537.2023.077
ZTFLH:  TG178  
Fund: Shenyang Ligong University Scientific Research Innovation Team Support Project(SYLUXM202105);Shenyang Ligong University Horizontal Research Fund(2021071904);Shenyang Ligong University High-level Talent Introduction Scientific Research Project(1010147000903)
Corresponding Authors:  ZHOU Xin, E-mail: zhouxin@alum.imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.077     OR     https://www.jcscp.org/EN/Y2024/V44/I2/453

Fig.1  Synthesis process of OMB
Fig.2  FT-IR spectrum of OMB
Fig.3  Inhibition efficiency of OMB (a) and T701 (b) in salt spray test
Fig.4  Corrosion inhibition mechanism of OMB adsorbed on copper surface
Fig.5  Surface morphologies of copper after 7 d salt spray test: (a) blank, (b) 7% T701, (c) 7% OMB
Fig.6  AFM images of copper after 7 d salt spray test: (a) blank, (b) 7% T701, (c) 7% OMB
Fig.7  XPS spectra of copper with 7% OMB after 7 d salt spray test: (a) total spectrum, (b) Cl 2p, (c) N 1s, (d) C 1s, (e) Cu 2p3/2, (f) O 1s
Fig.8  Langmuir isothermal adsorption line of copper containing OMB inhibitor after 1, 3, 5, 7 d salt spray experiment OMB
Fig.9  Adsorption mechanism of OMB
Fig.10  OMB's structure (a), HOMO (b), LUMO (c) and ESP (d)
SpeciesEHOMOELUMOΔEPAIΔNχγσ
OMB-0.04966-0.238470.188810.049660.238479.299490.144070.0944110.5921
[C12H25SO3Ba]+-0.22156-0.355060.133500.221560.3550612.07250.288310.0667514.9812
Table 1  Quantum chemical parameters of OMB and [C12H25SO3Ba]+
Fig.11  Side view (a), top view (b) and radial distribution index (c) of OMB equilibrium adsorption on Cu(111)
SpeciesT / K

Ebinding

eV

Einteract

eV

Cu-OMB-Oil3085.852-5.852
Cu-OMB3084.781-4.781
Table.2  Binding energy and interaction energy of OMB
1 El-Katori E E, Ahmed M, Nady H. Imidazole derivatives based on Glycourils as efficient anti-corrosion inhibitors for copper in HNO3 solution: Synthesis, electrochemical, surface, and theoretical approaches[J]. Colloid. Surf., 2022, 649A: 129391
2 Shen J J, Yang D, Ma L R, et al. Exploration of neonicotinoids as novel corrosion inhibitors for copper in a NaCl solution: Experimental and theoretical studies[J]. Colloid. Surf., 2022, 636A: 128058
3 Huang M, Wang L Z, Ma X Q, et al. Synergistic inhibition effect of walnut green husk extract and Nd(NO3)3 on aluminum in HCl solution[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 471
黄 苗, 王丽姿, 马晓青 等. 核桃青皮提取物与Nd(NO3)3对Al在HCl溶液中的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2023, 43: 471
4 Zhou K, Liu X H, Liu X. Corrosion inhibition of navel orange peel extract to stainless steel in acidic medium[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 619
周 坤, 柳鑫华, 刘 帅. 在酸性介质中脐橙皮提取物对不锈钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2023, 43: 619
5 Li W H. Synthesis and Evaluation of New Corrosion Inhibitors[M]. Beijing: Science Press, 2015
李伟华. 新型缓蚀剂合成与评价[M]. 北京: 科学出版社, 2015
6 Mondal S, Aher R D, Bethi V, et al. Control of reactions of pyruvates by catalysts: direct enantioselective Mannich reactions of pyruvates catalyzed by amine-based catalyst systems[J]. Org. Lett., 2022, 24: 1853
doi: 10.1021/acs.orglett.2c00436
7 Gao Q Y, Zhu Q J, Zheng J F, et al. Positively charged membranes for dye/salt separation based on a crossover combination of Mannich reaction and prebiotic chemistry[J]. J. Hazardous Mater., 2022, 440: 129744
doi: 10.1016/j.jhazmat.2022.129744
8 Liu Z L, Shi Y C, Zhang X Y, et al. Discovery of novel 3-butyl-6-benzyloxyphthalide Mannich base derivatives as multifunctional agents against Alzheimer's disease[J]. Bioorg. Med. Chem., 2022, 58: 116660
doi: 10.1016/j.bmc.2022.116660
9 Wang G, Li W T, Wang X, et al. A Mannich-base imidazoline quaternary ammonium salt for corrosion inhibition of mild steel in HCl solution[J]. Mater. Chem. Phys., 2023, 293: 126956
doi: 10.1016/j.matchemphys.2022.126956
10 Ayeni A O, Akinyele O F, Hosten E C, et al. Synthesis, crystal structure, experimental and theoretical studies of corrosion inhibition of 2-((4-(2-hydroxy-4-methylbenzyl)piperazin-1-yl)methyl)-5-methylphenol-A Mannich base[J]. J. Mol. Struct., 2020, 1219: 128539
doi: 10.1016/j.molstruc.2020.128539
11 Singh A, Ansari K R, Quraishi M A, et al. Synthesis and investigation of Pyran derivatives as acidizing corrosion inhibitors for N80 steel in hydrochloric acid: Theoretical and experimental approaches[J]. J. Alloy. Compd., 2018, 762: 347
doi: 10.1016/j.jallcom.2018.05.236
12 Obot I B, Macdonald D D, Gasem Z M. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview[J]. Corros. Sci., 2015, 99: 1
doi: 10.1016/j.corsci.2015.01.037
13 Wu J G. Modern Fourier Transform Infrared Spectroscopy and Its Application[M]. Beijing: Science and Technology Academic Press, 1994
吴瑾光. 近代傅里叶变换红外光谱技术及应用[M]. 北京: 科学技术文献出版社, 1994
14 Solomon M M, Gerengi H, Umoren S A, et al. Gum Arabic-silver nanoparticles composite as a green anticorrosive formulation for steel corrosion in strong acid media[J]. Carbohydr. Polym., 2018, 181: 43
doi: 10.1016/j.carbpol.2017.10.051
15 Zhang Y, Tan B C, Zhang X, et al. Synthesized carbon dots with high N and S content as excellent corrosion inhibitors for copper in sulfuric acid solution[J]. J. Mol. Liq., 2021, 338: 116702
doi: 10.1016/j.molliq.2021.116702
16 Qiang Y J, Zhang S T, Yan S, et al. Three indazole derivatives as corrosion inhibitors of copper in a neutral chloride solution[J]. Corros. Sci., 2017, 126: 295
doi: 10.1016/j.corsci.2017.07.012
17 Satpati S, Suhasaria A, Ghosal S, et al. Amino acid and cinnamaldehyde conjugated schiff bases as proficient corrosion inhibitors for mild steel in 1 M HCl at higher temperature and prolonged exposure: detailed electrochemical, adsorption and theoretical study[J]. J. Mol. Liq., 2021, 324: 115077
doi: 10.1016/j.molliq.2020.115077
18 Zeng W J, Li W P, Tan B C, et al. A research combined theory with experiment of 2-amino-6-(Methylsulfonyl)Benzothiazole as an excellent corrosion inhibitor for copper in H2SO4 medium[J]. J. Taiwan Inst. Chem. Eng., 2021, 128: 417
doi: 10.1016/j.jtice.2021.08.032
19 Madkour L H, Kaya S, Kaya C, et al. Quantum chemical calculations, molecular dynamics simulation and experimental studies of using some azo dyes as corrosion inhibitors for iron. Part 1: Mono-azo dye derivatives[J]. J. Taiwan Inst. Chem. Eng., 2016, 68: 461
doi: 10.1016/j.jtice.2016.09.015
20 Zhang D Q, Tang Y M, Qi S J, et al. The inhibition performance of long-chain alkyl-substituted benzimidazole derivatives for corrosion of mild steel in HCl[J]. Corros. Sci., 2016, 102: 517
doi: 10.1016/j.corsci.2015.10.002
21 Ma Y C, Fan B M, Wang M M, et al. Two-step preparation of trazodone and its corrosion inhibition mechanism for carbon steel[J]. Chem. J. Chin. Univ., 2019, 40: 1706
马玉聪, 樊保民, 王满曼 等. 曲唑酮的两步法制备及对碳钢的缓蚀机理[J]. 高等学校化学学报, 2019, 40: 1706
doi: 10.7503/cjcu20190017
22 Wang Y S, Zuo Y. The adsorption and inhibition behavior of two organic inhibitors for carbon steel in simulated concrete pore solution[J]. Corros. Sci., 2017, 118: 24
doi: 10.1016/j.corsci.2017.01.008
23 Tan B C, Zhang S T, Li W P, et al. Food spices 2,5-dihydroxy-1,4-dithiane as an eco-friendly corrosion inhibitor for X70 steel in 0.5 mol/L H2SO4 Solution[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 469
谭伯川, 张胜涛, 李文坡 等. 食用香料1,4-二硫-2,5-二醇环保型缓蚀剂对X70钢在0.5 mol/L H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41: 469
doi: 10.11902/1005.4537.2020.100
[1] CHEN Hao, FAN Zhibin, CHEN Zhijian, ZHOU Xuejie, ZHENG Penghua, WU Jun. Effect of Cl- and HSO3- on Corrosion Behavior of 439 Stainless Steel Used in Construction[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[2] TAN Bochuan, ZHANG Shengtao, LI Wenpo, XIANG Bin, QIANG Yujie. Food Spices 2,5-Dihydroxy-1,4-dithiane as an Eco-friendly Corrosion Inhibitor for X70 Steel in 0.5 mol/L H2SO4 Solution[J]. 中国腐蚀与防护学报, 2021, 41(4): 469-476.
[3] SUN Weisong, YU Sirong, GAO Song, YAO Xinkuan, XU Hailiang, QIAN Bing, WANG Bingzi. Molecular Dynamics Simulation of Water Molecule Diffusion in Graphene-reinforced Epoxy Resin Anticorrosive Coatings[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
[4] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[5] Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[6] Jingmao ZHAO,Xiong ZHAO,Ruijing JIANG. Effect of Double Bonds in Hydrophobic Chains on Corrosion Inhibition Performance of Imidazoline Derivates in Dynamic H2S/CO2 Environment[J]. 中国腐蚀与防护学报, 2015, 35(6): 505-509.
[7] Tiejun SU, Yunbai LUO, Kehua LI, Fanxiu LI, Shiying DENG, Wei XI. Corrosion Inhibition Performance of Benzimidazole N-Mannich Base for Mild Steel in Hydrochloric Acid[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
[8] Lijuan FENG,Kangwen ZHAO,Huaiyu YANG,Nan TANG,Fuhui WANG,Tie SHANGGUAN. Synergistic Effect of Inhibitors of an Imidazoline Derivative and Tetraethylenepentamine on Corrosion Inhibition of Steel Rebar in an Artifial Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2015, 35(4): 297-304.
[9] XIE Bin, ZHU Shasha, LI Yulong, LAI Chuan, LIN Xiao, ZOU Like, HE Linxin, CHEN Neng. Corrosion Inhibition Performance of Diethylammonium O,O '-Di(2-phenylethyl)dithiophosphate for Q235 Steel in HCl Solution[J]. 中国腐蚀与防护学报, 2014, 34(4): 366-374.
[10] LIU Jie, LIU Zheng, LIU Jin, XIE Siwei. Inhibition Performance of a New 3,5-dibromosalicylaldehyde-2-thenoyl Hydrazine Schiff Base for Carbon Steel in Oilfield Water and Relevant Molecular Dynamics Simulation[J]. 中国腐蚀与防护学报, 2014, 34(2): 101-111.
[11] WU Gang, GENG Yufeng, JIA Xiaolin, SUN Shuangqing, HU Songqing. THEORETICAL EVALUATION OF CORROSION INHIBITION PERFORMANCE OF ISOXAZOLIDINES DERIVATIVES[J]. 中国腐蚀与防护学报, 2012, 32(6): 513-519.
[12] SHI Wenyan, XIA Yuan, LEI Wu, XIA Mingzhu, WANG Fengyun, ZHANG Qiping, ZHANG Yuehua. MOLECULAR DYNAMICS SIMULATION OF CORROSION INHIBITING MECHANISM OF IRON BY FIVE KINDS OF AMINO ACIDS[J]. 中国腐蚀与防护学报, 2011, 31(6): 478-482.
[13] GONG Min, ZHANG Yu, ZHENG Xingwen, FENG Min, ZHANG Guohu, YANG Lin. STUDY OF THE SULFUR-CONTAINING AMINO'S STRUCTURE AND CORROSION INHIBITION MECHANISM IN H2SO4[J]. 中国腐蚀与防护学报, 2011, 31(5): 341-347.
[14] HU Songqing, HU Jianchun, YU Jinhua, SHI Xin, ZHANG Jun. QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP STUDIES ON CORROSION INHIBITION OF BENZIMIDAZOLE AND ITS DERIVATIVES[J]. 中国腐蚀与防护学报, 2010, 30(5): 354-358.
[15] . Molecular Dynamics Simulation of Interaction between Cuprous Oxide Crystal and Benzotriazole Derivatives[J]. 中国腐蚀与防护学报, 2007, 27(6): 348-353 .
No Suggested Reading articles found!