|
|
Preparation and Performance of CeO2@MWCNTs/EP Composite Coatings |
XUAN Xingyu, QU Shaopeng( ), ZHAO Xingya |
College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China |
|
|
Abstract Epoxy composite coatings with different contents of cerium salt treated multi-walled carbon nanotubes (CeO2@MWCNTs) were prepared on X80 steel. The corrosion behavior and tribological property of the composite coatings were studied. Meanwhile, the morphology, chemical composition and structure, as well as wettability and hardness of CeO2@MWCNTs/EP composite coating were characterized by means of SEM, TEM and white light interferometer, EDS, XPS and FT-IR, contact angle meter and microhardness tester etc. The results show that there exist physical adsorption for the interface between nano-CeO2 and MWCNTs in the prepared powder of CeO2@MWCNTs, while the structure of epoxy can be changed due to the introduction of nano-CeO2 particulates. CeO2@MWCNTs is beneficial to reduce the micropores in the CeO2@MWCNTs/EP composite coating, but the powders may agglomerate when the dosage reaches to 1.0%. It should be noted that CeO2@MWCNTs in dispersive state can improve the corrosion resistance of the composite coating, but in agglomerated state which presents negative effect. The corrosion resistance of CeO2@MWCNTs/EP composite coating first increases and then decrease with the increase of CeO2@MWCNTs content, and among others, the corrosion current density of the coating with 0.5% CeO2@MWCNTs/EP is the smallest, which is an order of magnitude less than that of the simple EP coating. CeO2@MWCNTs possesses lubricating function, therefore, the friction coefficient and wear rate of the composite coating show a decreasing trend with the increasing CeO2@MWCNTs content. The wear rate of 1.0% CeO2@MWCNTs/EP composite coating decreases by 64.7% in comparison with the simple EP coating.
|
Received: 08 October 2022
32134.14.1005.4537.2022.307
|
|
Fund: National Natural Science Foundation of China(51701115);Foundation of Key Laboratory of Marine Materials and Applied Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences(2016K04) |
Corresponding Authors:
QU Shaopeng, E-mail: spqu@shmtu.edu.cn
|
1 |
Liu C, Bhole S D. Challenges and developments in pipeline weldability and mechanical properties [J]. Sci. Technol. Weld. Join., 2013, 18: 169
doi: 10.1179/1362171812Y.0000000090
|
2 |
Wang P Y, Wang J, Zheng S Q, et al. Effect of H2S/CO2 partial pressure ratio on the tensile properties of X80 pipeline steel [J]. Int. J. Hydro. Energy, 2015, 40: 11925
doi: 10.1016/j.ijhydene.2015.04.114
|
3 |
Ballesteros A F, Gomes J A P, Bott I S. Corrosion evaluation of SAW welded API 5L X-80 joints in H2S-containing solution [J]. Mat. Res., 2015, 18: 417
doi: 10.1590/1516-1439.368714
|
4 |
Teng L, Chen X. Research progress of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 531
|
|
滕 琳, 陈 旭. 海洋环境中金属电偶腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 531
|
5 |
Sørensen P A, Kiil S, Dam-Johansen K, et al. Anticorrosive coatings: a review [J]. J. Coat. Technol. Res., 2009, 6: 135
doi: 10.1007/s11998-008-9144-2
|
6 |
Sari M G, Shamshiri M, Ramezanzadeh B. Fabricating an epoxy composite coating with enhanced corrosion resistance through impregnation of functionalized graphene oxide-co-montmorillonite Nanoplatelet [J]. Corros. Sci., 2017, 129: 38
doi: 10.1016/j.corsci.2017.09.024
|
7 |
Othman N H, Yahya W Z N, Ismail M C, et al. Highly dispersed graphene oxide-zinc oxide nanohybrids in epoxy coating with improved water barrier properties and corrosion resistance [J]. J. Coat. Technol. Res., 2020, 17: 101
doi: 10.1007/s11998-019-00245-y
|
8 |
Ramezanzadeh B, Niroumandrad S, Ahmadi A, et al. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide [J]. Corros. Sci., 2016, 103: 283
doi: 10.1016/j.corsci.2015.11.033
|
9 |
Matin E, Attar M M, Ramezanzadeh B. Investigation of corrosion protection properties of an epoxy nanocomposite loaded with polysiloxane surface modified nanosilica particles on the steel substrate [J]. Prog. Org. Coat., 2015, 78: 395
|
10 |
Liu J H, Yu Q, Yu M, et al. Silane modification of titanium dioxide-decorated graphene oxide nanocomposite for enhancing anticorrosion performance of epoxy coatings on AA-2024 [J]. J. Alloy. Compd., 2018, 744: 728
doi: 10.1016/j.jallcom.2018.01.267
|
11 |
Li X J, Hui H H, Zhao J W, et al. Effect of MWCNTs content on corrosion resistance of chromium-free zinc-aluminum coatings [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 324
|
|
李旭嘉, 惠红海, 赵君文 等. 多壁碳纳米管含量对无铬锌铝涂层耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 324
doi: 10.11902/1005.4537.2021.054
|
12 |
Pourhashem S, Ghasemy E, Rashidi A, et al. A review on application of carbon nanostructures as nanofiller in corrosion-resistant organic coatings [J]. J. Coat. Technol. Res., 2020, 17: 19
doi: 10.1007/s11998-019-00275-6
|
13 |
Deyab M A, Keera S T. Effect of nano-TiO2 particles size on the corrosion resistance of alkyd coating [J]. Mater. Chem. Phys., 2014, 146: 406
doi: 10.1016/j.matchemphys.2014.03.045
|
14 |
Dhoke S K, Khanna A S, Sinha T J M. Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings [J]. Prog. Org. Coat., 2009, 64: 371
doi: 10.1016/j.porgcoat.2008.07.023
|
15 |
Zuo M, Wu T T, Xu K G, et al. Sol-gel route to ceria coatings on AA2024-T3 aluminum alloy [J]. J. Coat. Technol. Res., 2015, 12: 75
doi: 10.1007/s11998-014-9621-8
|
16 |
Cai G Y, Wang H W, Zhao W H, et al. Effect of nano-CeO2 on anticorrosion performance for polyurethane coating [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 411
|
|
蔡光义, 王浩伟, 赵苇杭 等. 添加纳米CeO2对聚氨酯涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 411
doi: 10.11902/1005.4537.2016.147
|
17 |
Fedel M, Ahniyaz A, Ecco L G, et al. Electrochemical investigation of the inhibition effect of CeO2 nanoparticles on the corrosion of mild steel [J]. Electrochim. Acta, 2014, 131: 71
doi: 10.1016/j.electacta.2013.11.164
|
18 |
Xavier J R. Investigation on the effect of nano-ceria on the epoxy coatings for corrosion protection of mild steel in natural seawater [J]. Anti-Corros. Method Mater., 2018, 65: 38
doi: 10.1108/ACMM-04-2017-1784
|
19 |
Ma P C, Siddiqui N A, Marom G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review [J]. Composites, 2010, 41A: 1345
|
20 |
Wang S H, Duan H F, Ma G Z, et al. Epoxy functionalization of multiwalled carbon nanotubes for their waterborne polyurethane composite with crosslinked structure [J]. J. Coat. Technol. Res., 2020, 17: 91
doi: 10.1007/s11998-019-00242-1
|
21 |
Mu C Z, Zhang L Y, Song Y J, et al. Modification of carbon nanotubes by a novel biomimetic approach towards the enhancement of the mechanical properties of polyurethane [J]. Polymer, 2016, 92: 231
doi: 10.1016/j.polymer.2016.03.085
|
22 |
Cui M J, Ren S M, Qiu S H, et al. Non-covalent functionalized multi-wall carbon nanotubes filled epoxy composites: Effect on corrosion protection and tribological performance [J]. Surf. Coat. Technol., 2018, 340: 74
doi: 10.1016/j.surfcoat.2018.02.045
|
23 |
Khun N W, Troconis B C R, Frankel G S. Effects of carbon nanotube content on adhesion strength and wear and corrosion resistance of epoxy composite coatings on AA2024-T3 [J]. Prog. Org. Coat., 2014, 77: 72
|
24 |
Shibe V, Chawla V. Erosion studies of cermet-coated ASTM A36 steel [J]. Ind. Lubr. Tribol., 2019, 71: 242
doi: 10.1108/ILT-01-2018-0001
|
25 |
Ma L W, Wang X B, Wang J K, et al. Graphene oxide–cerium oxide hybrids for enhancement of mechanical properties and corrosion resistance of epoxy coatings [J]. J. Mater. Sci., 2021, 56: 10108
doi: 10.1007/s10853-021-05932-z
|
26 |
Paparazzo E, Ingo G M, Zacchetti N. X-ray induced reduction effects at CeO2 surfaces: an X-ray photoelectron spectroscopy study [J]. J. Vac. Sci. Technol., 1991, 9A: 1416
|
27 |
Živković L S, Jegdić B V, Andrić V, et al. The effect of ceria and zirconia nanoparticles on the corrosion behaviour of cataphoretic epoxy coatings on AA6060 alloy [J]. Prog. Org. Coat., 2019, 136: 105219
|
28 |
William W S. The Sadtler Handbook of Infrared Spectra [M]. Philadelphia, America: Sadtler Research Laboratories, 1978
|
29 |
Montemor M F, Simões A M, Ferreira M G S, et al. Composition and corrosion resistance of cerium conversion films on the AZ31 magnesium alloy and its relation to the salt anion [J]. Appl. Surf. Sci., 2008, 254: 1806
doi: 10.1016/j.apsusc.2007.07.187
|
30 |
Zhang L S, Jiang Y, Zai W, et al. Fabrication of superhydrophobic calcium phosphate coating on Mg-Zn-Ca alloy and its corrosion resistance [J]. J. Mater. Eng. Perform., 2017, 26: 6117
doi: 10.1007/s11665-017-2994-y
|
31 |
Brug G J, Van Den Eeden A L G, Sluyters-Rehbach M, et al. The analysis of electrode impedances complicated by the presence of a constant phase element [J]. J. Electroanal. Chem. Interfacial Electrochem., 1984, 176: 275
doi: 10.1016/S0022-0728(84)80324-1
|
32 |
Xu Y X, Yan C W, Ding J, et al. UV photo-degradation of coatings [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 168
|
|
徐永祥, 严川伟, 丁 杰 等. 紫外光对涂层的老化作用 [J]. 中国腐蚀与防护学报, 2004, 24: 168
|
33 |
Ding R, Gui T J, Jiang J M, et al. Electrochemical impedance spectroscopy study of corrosion behavior of solvent-free epoxy coatings on steel substrate [J]. Chin. J. Vac. Sci. Technol., 2017, 37: 165
|
|
丁 锐, 桂泰江, 蒋建明 等. 应用EIS研究改性无溶剂环氧防腐涂层的防护性能和腐蚀特征 [J]. 真空科学与技术学报, 2017, 37: 165
|
34 |
Min C Y, He Z B, Song H J, et al. Fabrication of novel CeO2/GO/CNTs ternary nanocomposites with enhanced tribological performance [J]. Appl. Sci., 2019, 9: 170
doi: 10.3390/app9010170
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|