Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (5): 992-1002    DOI: 10.11902/1005.4537.2022.307
Current Issue | Archive | Adv Search |
Preparation and Performance of CeO2@MWCNTs/EP Composite Coatings
XUAN Xingyu, QU Shaopeng(), ZHAO Xingya
College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
Download:  HTML  PDF(19882KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Epoxy composite coatings with different contents of cerium salt treated multi-walled carbon nanotubes (CeO2@MWCNTs) were prepared on X80 steel. The corrosion behavior and tribological property of the composite coatings were studied. Meanwhile, the morphology, chemical composition and structure, as well as wettability and hardness of CeO2@MWCNTs/EP composite coating were characterized by means of SEM, TEM and white light interferometer, EDS, XPS and FT-IR, contact angle meter and microhardness tester etc. The results show that there exist physical adsorption for the interface between nano-CeO2 and MWCNTs in the prepared powder of CeO2@MWCNTs, while the structure of epoxy can be changed due to the introduction of nano-CeO2 particulates. CeO2@MWCNTs is beneficial to reduce the micropores in the CeO2@MWCNTs/EP composite coating, but the powders may agglomerate when the dosage reaches to 1.0%. It should be noted that CeO2@MWCNTs in dispersive state can improve the corrosion resistance of the composite coating, but in agglomerated state which presents negative effect. The corrosion resistance of CeO2@MWCNTs/EP composite coating first increases and then decrease with the increase of CeO2@MWCNTs content, and among others, the corrosion current density of the coating with 0.5% CeO2@MWCNTs/EP is the smallest, which is an order of magnitude less than that of the simple EP coating. CeO2@MWCNTs possesses lubricating function, therefore, the friction coefficient and wear rate of the composite coating show a decreasing trend with the increasing CeO2@MWCNTs content. The wear rate of 1.0% CeO2@MWCNTs/EP composite coating decreases by 64.7% in comparison with the simple EP coating.

Key words:  coating      epoxy      CeO2@MWCNTs      corrosion      friction and wear     
Received:  08 October 2022      32134.14.1005.4537.2022.307
ZTFLH:  TB332  
Fund: National Natural Science Foundation of China(51701115);Foundation of Key Laboratory of Marine Materials and Applied Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences(2016K04)
Corresponding Authors:  QU Shaopeng, E-mail: spqu@shmtu.edu.cn   

Cite this article: 

XUAN Xingyu, QU Shaopeng, ZHAO Xingya. Preparation and Performance of CeO2@MWCNTs/EP Composite Coatings. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 992-1002.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.307     OR     https://www.jcscp.org/EN/Y2023/V43/I5/992

Fig.1  Morphologies (a, b) and EDS results (c, d) of MWCNTs (a, c) and CeO2@MWCNTs (b, d)
Fig.2  TEM (a, d), HRTEM images (b, e) and SAED results (c, f) of MWCNTs (a-c) and CeO2@MWCNTs (d-f)
Fig.3  XPS spectra of CeO2@MWCNTs: (a) Ce 3d, (b) O 1s, (c) C 1s
Fig.4  Cross section (a, d, g, j), surface (b, e, h, k) and fracture surface (c, f, i, l) morphologies of EP (a-c) coating and CeO2@MWCNTs/EP composite coatings with CeO2@MWCNTs content of 0.1% (d-f), 0.5% (g-i) and 1.0% (j-l)
Fig.5  EDS mapping of Ce in the fracture surface of CeO2@MWCNTs/EP composite coatings with CeO2@MWCNTs content of 0.1% (a), 0.5% (b) and 1% (c)
Fig.6  FT-IR spectra of MWCNTs and CeO2@MWCNTs (a), and CeO2@MWCNTs/EP composite coatings with different contents of CeO2@MWCNTs (b)
Fig.7  Contact angle test results of CeO2@MWCNTs/EP composite coatings with different contents of CeO2@MWCNTs
Fig.8  Nyquist (a) and Bode (b) plots of CeO2@MWCNTs/EP composite coatings with different contents of CeO2@MWCNTs and equivalent circuit (c)
Sample

Rs

Ω·cm2

CPE2

R2

Ω·cm2

CPE1

R1

Ω·cm2

CPE3

Rt

Ω·cm2

Error
Y0S·s n ·cm-2nY0S·s n ·cm-2nY0S·s n ·cm-2n
EP8.939.45×10-90.880.45×1031.39×10-80.922.43×1041.72×10-60.672.54×1055.69%
0.1% CeO2@MWCNTs/EP8.121.43×10-90.930.74×1032.42×10-90.910.92×1052.39×10-70.632.66×1066.47%
0.5% CeO2@MWCNTs/EP8.371.58×10-60.811.16×1033.49×10-100.972.94×1056.42×10-70.453.54×1064.08%
1.0% CeO2@MWCNTs/EP8.761.72×10-60.841.59×1032.41×10-90.934.78×1048.38×10-70.575.62×1057.92%
Table 1  Fitting results of EIS of CeO2@MWCNTs/EP composite coatings with different contents of CeO2@MWCNTs
Fig.9  Porosity variation curve (a) and dynamic poten-tial polarization curves (b) for CeO2@MWCNTs/EP composite coatings with different contents of CeO2@MWCNTs
SampleEcorr / VIcorr / µA·cm-2
EP-0.5070.187
0.1% CeO2@MWCNTs/EP-0.4930.018
0.5% CeO2@MWCNTs/EP-0.4030.013
1.0% CeO2@MWCNTs/EP-0.4990.041
Table 2  Fitting electrochemical parameters of CeO2@MWCNTs/EP composite coatings with different contents of CeO2@MWCNTs
Fig.10  Vickers hardness values of CeO2@MWCNTs/EP composite coatings with different contents of CeO2@MWCNTs
Fig.11  Friction coefficients (a) and wear rates (b) of CeO2@MWCNTs/EP composite coatings with different contents of CeO2@MWCNTs, and 3D profiles of 0% (c), 0.1% (d), 0.5% (e) and 1.0% (f) CeO2@MWCNTs/EP composite coatings
Fig.12  Schematic diagrams of corrosion resistance of CeO2@MWCNTs/EP composite coatings containing 0% (a), 0.1% (b), 0.5% (c) and 1.0% (d) CeO2@MWCNTs
1 Liu C, Bhole S D. Challenges and developments in pipeline weldability and mechanical properties [J]. Sci. Technol. Weld. Join., 2013, 18: 169
doi: 10.1179/1362171812Y.0000000090
2 Wang P Y, Wang J, Zheng S Q, et al. Effect of H2S/CO2 partial pressure ratio on the tensile properties of X80 pipeline steel [J]. Int. J. Hydro. Energy, 2015, 40: 11925
doi: 10.1016/j.ijhydene.2015.04.114
3 Ballesteros A F, Gomes J A P, Bott I S. Corrosion evaluation of SAW welded API 5L X-80 joints in H2S-containing solution [J]. Mat. Res., 2015, 18: 417
doi: 10.1590/1516-1439.368714
4 Teng L, Chen X. Research progress of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 531
滕 琳, 陈 旭. 海洋环境中金属电偶腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 531
5 Sørensen P A, Kiil S, Dam-Johansen K, et al. Anticorrosive coatings: a review [J]. J. Coat. Technol. Res., 2009, 6: 135
doi: 10.1007/s11998-008-9144-2
6 Sari M G, Shamshiri M, Ramezanzadeh B. Fabricating an epoxy composite coating with enhanced corrosion resistance through impregnation of functionalized graphene oxide-co-montmorillonite Nanoplatelet [J]. Corros. Sci., 2017, 129: 38
doi: 10.1016/j.corsci.2017.09.024
7 Othman N H, Yahya W Z N, Ismail M C, et al. Highly dispersed graphene oxide-zinc oxide nanohybrids in epoxy coating with improved water barrier properties and corrosion resistance [J]. J. Coat. Technol. Res., 2020, 17: 101
doi: 10.1007/s11998-019-00245-y
8 Ramezanzadeh B, Niroumandrad S, Ahmadi A, et al. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide [J]. Corros. Sci., 2016, 103: 283
doi: 10.1016/j.corsci.2015.11.033
9 Matin E, Attar M M, Ramezanzadeh B. Investigation of corrosion protection properties of an epoxy nanocomposite loaded with polysiloxane surface modified nanosilica particles on the steel substrate [J]. Prog. Org. Coat., 2015, 78: 395
10 Liu J H, Yu Q, Yu M, et al. Silane modification of titanium dioxide-decorated graphene oxide nanocomposite for enhancing anticorrosion performance of epoxy coatings on AA-2024 [J]. J. Alloy. Compd., 2018, 744: 728
doi: 10.1016/j.jallcom.2018.01.267
11 Li X J, Hui H H, Zhao J W, et al. Effect of MWCNTs content on corrosion resistance of chromium-free zinc-aluminum coatings [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 324
李旭嘉, 惠红海, 赵君文 等. 多壁碳纳米管含量对无铬锌铝涂层耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 324
doi: 10.11902/1005.4537.2021.054
12 Pourhashem S, Ghasemy E, Rashidi A, et al. A review on application of carbon nanostructures as nanofiller in corrosion-resistant organic coatings [J]. J. Coat. Technol. Res., 2020, 17: 19
doi: 10.1007/s11998-019-00275-6
13 Deyab M A, Keera S T. Effect of nano-TiO2 particles size on the corrosion resistance of alkyd coating [J]. Mater. Chem. Phys., 2014, 146: 406
doi: 10.1016/j.matchemphys.2014.03.045
14 Dhoke S K, Khanna A S, Sinha T J M. Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings [J]. Prog. Org. Coat., 2009, 64: 371
doi: 10.1016/j.porgcoat.2008.07.023
15 Zuo M, Wu T T, Xu K G, et al. Sol-gel route to ceria coatings on AA2024-T3 aluminum alloy [J]. J. Coat. Technol. Res., 2015, 12: 75
doi: 10.1007/s11998-014-9621-8
16 Cai G Y, Wang H W, Zhao W H, et al. Effect of nano-CeO2 on anticorrosion performance for polyurethane coating [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 411
蔡光义, 王浩伟, 赵苇杭 等. 添加纳米CeO2对聚氨酯涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 411
doi: 10.11902/1005.4537.2016.147
17 Fedel M, Ahniyaz A, Ecco L G, et al. Electrochemical investigation of the inhibition effect of CeO2 nanoparticles on the corrosion of mild steel [J]. Electrochim. Acta, 2014, 131: 71
doi: 10.1016/j.electacta.2013.11.164
18 Xavier J R. Investigation on the effect of nano-ceria on the epoxy coatings for corrosion protection of mild steel in natural seawater [J]. Anti-Corros. Method Mater., 2018, 65: 38
doi: 10.1108/ACMM-04-2017-1784
19 Ma P C, Siddiqui N A, Marom G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review [J]. Composites, 2010, 41A: 1345
20 Wang S H, Duan H F, Ma G Z, et al. Epoxy functionalization of multiwalled carbon nanotubes for their waterborne polyurethane composite with crosslinked structure [J]. J. Coat. Technol. Res., 2020, 17: 91
doi: 10.1007/s11998-019-00242-1
21 Mu C Z, Zhang L Y, Song Y J, et al. Modification of carbon nanotubes by a novel biomimetic approach towards the enhancement of the mechanical properties of polyurethane [J]. Polymer, 2016, 92: 231
doi: 10.1016/j.polymer.2016.03.085
22 Cui M J, Ren S M, Qiu S H, et al. Non-covalent functionalized multi-wall carbon nanotubes filled epoxy composites: Effect on corrosion protection and tribological performance [J]. Surf. Coat. Technol., 2018, 340: 74
doi: 10.1016/j.surfcoat.2018.02.045
23 Khun N W, Troconis B C R, Frankel G S. Effects of carbon nanotube content on adhesion strength and wear and corrosion resistance of epoxy composite coatings on AA2024-T3 [J]. Prog. Org. Coat., 2014, 77: 72
24 Shibe V, Chawla V. Erosion studies of cermet-coated ASTM A36 steel [J]. Ind. Lubr. Tribol., 2019, 71: 242
doi: 10.1108/ILT-01-2018-0001
25 Ma L W, Wang X B, Wang J K, et al. Graphene oxide–cerium oxide hybrids for enhancement of mechanical properties and corrosion resistance of epoxy coatings [J]. J. Mater. Sci., 2021, 56: 10108
doi: 10.1007/s10853-021-05932-z
26 Paparazzo E, Ingo G M, Zacchetti N. X-ray induced reduction effects at CeO2 surfaces: an X-ray photoelectron spectroscopy study [J]. J. Vac. Sci. Technol., 1991, 9A: 1416
27 Živković L S, Jegdić B V, Andrić V, et al. The effect of ceria and zirconia nanoparticles on the corrosion behaviour of cataphoretic epoxy coatings on AA6060 alloy [J]. Prog. Org. Coat., 2019, 136: 105219
28 William W S. The Sadtler Handbook of Infrared Spectra [M]. Philadelphia, America: Sadtler Research Laboratories, 1978
29 Montemor M F, Simões A M, Ferreira M G S, et al. Composition and corrosion resistance of cerium conversion films on the AZ31 magnesium alloy and its relation to the salt anion [J]. Appl. Surf. Sci., 2008, 254: 1806
doi: 10.1016/j.apsusc.2007.07.187
30 Zhang L S, Jiang Y, Zai W, et al. Fabrication of superhydrophobic calcium phosphate coating on Mg-Zn-Ca alloy and its corrosion resistance [J]. J. Mater. Eng. Perform., 2017, 26: 6117
doi: 10.1007/s11665-017-2994-y
31 Brug G J, Van Den Eeden A L G, Sluyters-Rehbach M, et al. The analysis of electrode impedances complicated by the presence of a constant phase element [J]. J. Electroanal. Chem. Interfacial Electrochem., 1984, 176: 275
doi: 10.1016/S0022-0728(84)80324-1
32 Xu Y X, Yan C W, Ding J, et al. UV photo-degradation of coatings [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 168
徐永祥, 严川伟, 丁 杰 等. 紫外光对涂层的老化作用 [J]. 中国腐蚀与防护学报, 2004, 24: 168
33 Ding R, Gui T J, Jiang J M, et al. Electrochemical impedance spectroscopy study of corrosion behavior of solvent-free epoxy coatings on steel substrate [J]. Chin. J. Vac. Sci. Technol., 2017, 37: 165
丁 锐, 桂泰江, 蒋建明 等. 应用EIS研究改性无溶剂环氧防腐涂层的防护性能和腐蚀特征 [J]. 真空科学与技术学报, 2017, 37: 165
34 Min C Y, He Z B, Song H J, et al. Fabrication of novel CeO2/GO/CNTs ternary nanocomposites with enhanced tribological performance [J]. Appl. Sci., 2019, 9: 170
doi: 10.3390/app9010170
[1] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[2] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[3] YAO Yong, LIU Guojun, LI Shizhu, LIU Miaoran, CHEN Chuan, HUANG Tingcheng, LIN Hai, LI Zhanjiang, LIU Yuwei, WANG Zhenyao. Research Progress on Corrosion Prediction Model of Metallic Materials for Electrical Equipment[J]. 中国腐蚀与防护学报, 2023, 43(5): 983-991.
[4] SHI Jian, HU Xuewen, HE Bo, PU Hong, GUO Rui, WANG Fei. Effect of Cr-Sb Addition on Atmospheric Corrosion Resistance of Economical High Weathering Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1159-1164.
[5] HU Jiezhen, LAN Wenjie, DENG Peichang, WU Jingquan, ZENG Junhao. Corrosion Behavior of E690 Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[6] LI Jiayuan, ZENG Tianhao, LIU Youtong, WU Xiaochun. Corrosion Behavior of 4Cr16Mo Martensite Stainless Steel with 1% Cu Addition by Applied Stress[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[7] GU Yuhui, DONG Liang, SONG Qinfeng. Preparation of Micro Metal Oxide pH Electrode and Its Application in Corrosion and Protection[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[8] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[9] LIU Wei. Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[10] CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[11] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[12] LI Tianyu, WANG Weikang, LI Yangtao, BAO Tengfei, ZHAO Mengfan, SHEN Xinxin, NI Lei, MA Qinglei, TIAN Huiwen. Corrosion Failure Mechanism of Ultra-high-performance Concretes Prepared with Sea Water and Sea Sand in an Artificial Sea Water Containing Sulfate[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[13] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[14] GAO Qiuying, ZENG Wenguang, WANG Heng, LIU Yuancong, HU Junying. Effect of Fluid Scouring on Sulfate Reducting Bacteria Induced Corrosion of Pipeline Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[15] CHEN Zhenyu, ZHU Zhongliang, MA Chenhao, ZHANG Naiqiang, LIU Yutong. Effect of Different Loading Conditions on Corrosion Fatigue Crack Growth Rate of Nickel Base Alloy 617 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
No Suggested Reading articles found!