Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (5): 983-991    DOI: 10.11902/1005.4537.2022.332
Current Issue | Archive | Adv Search |
Research Progress on Corrosion Prediction Model of Metallic Materials for Electrical Equipment
YAO Yong1, LIU Guojun1, LI Shizhu1, LIU Miaoran2(), CHEN Chuan2, HUANG Tingcheng2, LIN Hai3, LI Zhanjiang3, LIU Yuwei4, WANG Zhenyao4
1.Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou 510630, China
2.China National Electric Apparatus Research Institute Co., Ltd., Guangzhou 510799, China
3.Zhanjiang Customs Technology Center, Zhanjiang 524000, China
4.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(1058KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Metallic materials for electrical equipment are affected by many factors related with environment during service, and their corrosion behavior is very complex, therefore, which is difficult to be accurately predicted. The development of computer technology and data analysis technology enriches the prediction methods for corrosion behavior of metallic materials with better accuracy. This paper summarizes and analyzes the existing common corrosion prediction methods in the field of corrosion, including function model, grey theory model, neural network prediction model, dose response function model and random forest model etc., and which then are classified into two types, namely corrosion-time models and corrosion-environment prediction models. Furthermore, the characteristics and application scope of different corrosion prediction models are introduced. Finally, prospects for the corrosion prediction of metallic materials are put forward especially in terms of the demands of power industry.

Key words:  metallic material      corrosion      prediction model      data processing      electrical equipment     
Received:  25 October 2022      32134.14.1005.4537.2022.332
ZTFLH:  TG174.42  
Fund: Science and Technology Project of Guangdong Energy Group Co., Ltd(STI-PY-21009)
Corresponding Authors:  LIU Miaoran, E-mail: liumr@cei1958.com   

Cite this article: 

YAO Yong, LIU Guojun, LI Shizhu, LIU Miaoran, CHEN Chuan, HUANG Tingcheng, LIN Hai, LI Zhanjiang, LIU Yuwei, WANG Zhenyao. Research Progress on Corrosion Prediction Model of Metallic Materials for Electrical Equipment. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 983-991.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.332     OR     https://www.jcscp.org/EN/Y2023/V43/I5/983

Fig.1  Corrosion kinetics curves of mass losses (a, c, e, g) and corrosion rates (b, d, f, h) of carbon steels in Finland (a, b), Czechoslovakia (c, d), Sweden (e, f) and France (g, h)[14, 15]
Fig.2  Schematic diagram of neural network element
Fig.3  Schematic diagram of neural network model
1 Li X G, Dong C F, Xiao K, et al. Initial Behavior and Mechanism of Metal Atmospheric Corrosion [M]. Beijing: Science Press, 2009
李晓刚, 董超芳, 肖 葵 等. 金属大气腐蚀初期行为与机理 [M]. 北京: 科学出版社, 2009
2 Cao C N. Corrosion of Chinese Materials in Natural Environment [M]. Beijing: Chemical Industry Press, 2005
曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005
3 Xiao Y D, Zhang S P, Cao X L, et al. Recent development in atmospheric corrosion study of materials in China (the end) [J]. Equip. Environ. Eng., 2006, 3(2): 1
萧以德, 张三平, 曹献龙 等. 我国大气腐蚀研究进展(续完) [J]. 装备环境工程, 2006, 3(2): 1
4 Wang C, Wang Z Y, Wei W, et al. Statistical analysis and predictive model in corrosion research [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 306
汪 川, 王振尧, 魏 伟 等. 腐蚀研究中的统计分析方法和预测模型 [J]. 中国腐蚀与防护学报, 2010, 30: 306
5 Wang C, Wang Z R, Ke W. Statistical analysis in corrosion research [A]. The 10th National Youth Corrosion and Protection Scientific and Technological Papers Evaluation Meeting of the Yuxiang Cup and the 8th Chinese Youth Corrosion and Protection Symposium Proceedings [C]. Shenyang, 2007: 444
汪 川, 王振尧, 柯 伟. 腐蚀研究中的统计分析方法 [A]. 裕祥杯第十届全国青年腐蚀与防护科技论文讲评会暨第八届中国青年腐蚀与防护研讨会论文集 [C]. 沈阳, 2007: 444
6 Song S Z, Wang G Y, Wang S Y. Proceeding of research on national natural environmental corrosion data processing [J]. J. Chin. Soc. Corros. Prot., 2003, 23: 56
宋诗哲, 王光雍, 王守琰. 我国材料自然环境腐蚀数据处理研究进展 [J]. 中国腐蚀与防护学报, 2003, 23: 56
7 Sabir S, Ibrahim A A. Influence of atmospheric pollution on corrosion of materials in Saudi Arabia [J]. Corros. Eng. Sci. Technol., 2017, 52: 276
doi: 10.1080/1478422X.2016.1274839
8 Hou W, Liang C. Eight-year atmospheric corrosion exposure of steels in China [J]. Corrosion, 1999, 55: 65
doi: 10.5006/1.3283967
9 Feliu S, Morcillo M, Feliu Jr S. The prediction of atmospheric corrosion from meteorological and pollution parameters—I. Annual corrosion [J]. Corros. Sci., 1993, 34: 403
doi: 10.1016/0010-938X(93)90112-T
10 Feliu S, Morcillo M, Feliu Jr S. The prediction of atmospheric corrosion from meteorological and pollution parameters—II. Long-term forecasts [J]. Corros. Sci., 1993, 34: 415
doi: 10.1016/0010-938X(93)90113-U
11 Liang C F, Hou W T. Sixteen-year atmospheric corrosion exposure study of steels [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 1
梁彩凤, 侯文泰. 碳钢、低合金钢16年大气暴露腐蚀研究 [J]. 中国腐蚀与防护学报, 2005, 25: 1
12 Xing S B, Li X G, Li L, et al. Corrosion behavior of 7A04 aluminum alloy in Xisha marine atmosphere [J]. Corros. Prot., 2013, 34(09): 796
邢士波, 李晓刚, 李 丽 等. 7A04铝合金在西沙海洋大气中的腐蚀行为 [J]. 腐蚀与防护, 2013, 34(09): 796
13 Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51: 997
doi: 10.1016/j.corsci.2009.02.009
14 Panchenko Y M, Marshakov A I, Igonin T N, et al. Long-term forecast of corrosion mass losses of technically important metals in various world regions using a power function [J]. Corros. Sci., 2014, 88: 306
doi: 10.1016/j.corsci.2014.07.049
15 Panchenko Y M, Marshakov A I. Long-term prediction of metal corrosion losses in atmosphere using a power-linear function [J]. Corros. Sci., 2016, 109: 217
doi: 10.1016/j.corsci.2016.04.002
16 Morcillo M, Chico B, Díaz I, et al. Atmospheric corrosion data of weathering steels. A review [J]. Corros. Sci., 2013, 77: 6
doi: 10.1016/j.corsci.2013.08.021
17 De La Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel [J]. Corros. Sci., 2011, 53: 604
doi: 10.1016/j.corsci.2010.10.007
18 Organization I S. Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Guiding Values for the Corrosivity Categories [M]. Geneva: International Standards Organization, 2012
19 Liu Z G, Gao X H, Du L X, et al. Corrosion behaviour of low-alloy steel with titanium addition exposed to seawater environment [J]. Int. J. Electrochem. Sci., 2016, 11: 6540
doi: 10.20964/2016.08.25
20 Deng J L. Grey Control System [M]. Wuhan: Huazhong University of Science and Technology Press, 1990
邓聚龙. 灰色系统理论教程 [M]. 武汉: 华中理工大学出版社, 1990
21 Wang Z F, Wang W Q, Hui Q. Grey predication of corrosion on oil atmospheric distillation equipment [A]. 2009 4th IEEE Conference on Industrial Electronics and Applications [C]. Xi'an, 2009
22 Yin W K, Li F, Zhao W B. Gray prediction model of corrosion life of coatings of steel tower for transmission line and its application [J]. Water Res. Power, 2019, 37(4): 163
尹文阔, 李 峰, 赵文彬. 输电线路钢结构杆塔涂层腐蚀寿命灰色预测模型及应用 [J]. 水电能源科学, 2019, 37(4): 163
23 Wang H T, Han E-H, Ke W. Prediction and analysis of seawater corrosion of carbon steel and low alloy steels by gray theory [J]. Corros. Prot., 2005, 26(09): 373
王海涛, 韩恩厚, 柯 伟. 灰色理论对碳钢、低合金钢海水腐蚀的预测和分析 [J]. 腐蚀与防护, 2005, 26(09): 373
24 Zhang X Y, Zhang H Y. Research on the marine corrosion model of ferrous metal based on PLS and grey relational analysis [J]. Appl. Mech. Mater., 2011, 128/129: 237
25 Cai J P, Ke W. Application of neural networks to atmospheric corrosion of carbon steel and low alloy steels [J]. J. Chin. Soc. Corros. Prot., 1997, 17: 303
蔡建平, 柯 伟. 应用人工神经网络预测碳钢、低合金钢的大气腐蚀 [J]. 中国腐蚀与防护学报, 1997, 17: 303
26 Wang H T, Han E-H, Ke W. Artificial neural network modeling for atmospheric corrosion of carbon steel and low alloy steel [J]. Corros. Sci. Prot. Technol., 2006, 18: 144
王海涛, 韩恩厚, 柯 伟. 用人工神经网络构建碳钢、低合金钢大气腐蚀模型 [J]. 腐蚀科学与防护技术, 2006, 18: 144
27 Wang H T, Han E-H, Ke W. Predictive model for atmospheric corrosion of aluminium alloy by artificial neural network [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 272
王海涛, 韩恩厚, 柯 伟. 基于人工神经网络模型的铝合金大气腐蚀的预测 [J]. 中国腐蚀与防护学报, 2006, 26: 272
28 Guo Z H, Xing Z L, Jin M H, et al. Predicting corrosion rate of mild steel in soil based on artificial neural network [J]. J. Chin. Soc. Corros. Prot., 1996, 16: 307
郭稚弧, 邢政良, 金名惠 等. 基于人工神经网络的金属土壤腐蚀预测方法 [J]. 中国腐蚀与防护学报, 1996, 16: 307
29 Hua G R, Li W H, Guo Y Y. Corrosion rate prediction of Q235 steel in Hainan substation grounding grid based on neural network models [J]. Corros. Prot., 2017, 38: 573
花广如, 李文浩, 郭阳阳. 基于神经网络模型的海南变电站接地网Q235钢腐蚀率预测 [J]. 腐蚀与防护, 2017, 38: 573
30 Zhao X F, Fu D M, Pei Z B, et al. Optimization of sectional dose-response function and determination method of corrosion category for carbon steel [J]. Corros. Prot., 2018, 39: 805
赵兴锋, 付冬梅, 裴梓博 等. 分段式剂量响应函数优化及碳钢腐蚀等级判别方法 [J]. 腐蚀与防护, 2018, 39: 805
31 Panchenko Y M, Marshakov A I. Prediction of first-year corrosion losses of carbon steel and zinc in continental regions [J]. Materials (Basel), 2017, 10: 422
doi: 10.3390/ma10040422
32 Ye D, Zhao D W, Zhang D B. Dose-response functions for atmospheric corrosion on metals [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 351
叶 堤, 赵大为, 张冬保. 金属材料大气腐蚀破坏的剂量响应函数研究 [J]. 中国腐蚀与防护学报, 2006, 26: 351
33 Leuenberger-Minger A U, Buchmann B, Faller M. Dose-response functions for weathering steel, copper and zinc obtained from a four-year exposure programme in Switzerland [J]. Corros. Sci., 2002, 44: 675
doi: 10.1016/S0010-938X(01)00097-X
34 Ríos-Rojas J F, Aperador-Rodríguez D, Hernández-García E A, et al. Annual atmospheric corrosion rate and dose-response function for carbon steel in Bogotá [J]. Atmósfera, 2017, 30: 53
doi: 10.20937/ATM
35 Qu Z H, Tang D Z, Hu L H, et al. Prediction of H2S corrosion products and corrosion rate based on optimized random forest [J]. Surf. Technol., 2020, 49(3): 42
曲志豪, 唐德志, 胡丽华 等. 基于优化随机森林的H2S腐蚀产物类型及腐蚀速率预测 [J]. 表面技术, 2020, 49(3): 42
36 Luo Z S, Song Y Y, Wang X W, et al. Corrosion prediction of gathering pipelines in condensate gas field [J]. China Saf. Sci. J., 2019, 29(11): 135
骆正山, 宋莹莹, 王小完 等. 凝析气田集输管线腐蚀预测研究 [J]. 中国安全科学学报, 2019, 29(11): 135
doi: 10.16265/j.cnki.issn1003-3033.2019.11.022
37 Chun P J, Ujike I, Mishima K, et al. Random forest-based evaluation technique for internal damage in reinforced concrete featuring multiple nondestructive testing results [J]. Constr. Build. Mater., 2020, 253: 119238
doi: 10.1016/j.conbuildmat.2020.119238
38 Fang S F, Wang M P, Qi W H, et al. Hybrid genetic algorithms and support vector regression in forecasting atmospheric corrosion of metallic materials[J]. Comput. Mater. Sci., 2009, 44: 647
doi: 10.1016/j.commatsci.2008.05.010
39 Fu Z D, Fu D M, Li X G. Atmospheric corrosion modelling with SVM based feature selection [A]. 2009 International Conference on Computational Intelligence and Software Engineering [C]. Wuhan, 2009
40 Tian Y W. Study on the corrosion mechanism of the high-strength corrosion-resistance steel reinforcement and inhibitor in marine structures [D]. Beijing: University of Science and Technology Beijing, 2021
田玉琬. 海工用高强耐蚀钢筋的腐蚀机理及阻锈剂研究 [D]. 北京: 北京科技大学, 2021
41 Qiu X T, Fu D M, Fu Z D. Feature selection of atmospheric corrosion data based on SVM-RFE Method [J]. Adv. Comp. Sci. Appl., 2013, 2: 443
42 Wen Y F, Cai C Z, Liu X H, et al. Corrosion rate prediction of 3C steel under different seawater environment by using support vector regression [J]. Corros. Sci., 2009, 51: 349
doi: 10.1016/j.corsci.2008.10.038
43 Bi A R, Luo Z S, Qiao W, et al. Prediction of pipeline inner-corrosion based on principal component analysis and particle swarm optimization-support vector machine [J]. Surf. Technol., 2018, 47(9): 133
毕傲睿, 骆正山, 乔 伟 等. 基于主成分和粒子群优化支持向量机的管道内腐蚀预测 [J]. 表面技术, 2018, 47(9): 133
44 Li K. Study on corrosion mechanism and prediction model of SPHC in Tianjin atmospheric environment [D]. Tianjin: Civil Aviation University of China, 2021
李 柯. SPHC在天津大气环境下的腐蚀机理与预测模型研究 [D]. 天津: 中国民航大学, 2021
45 Yan L C, Diao Y P, Lang Z Y, et al. Corrosion rate prediction and influencing factors evaluation of low-alloy steels in marine atmosphere using machine learning approach [J]. Sci. Technol. Adv. Mater., 2020, 21: 359
doi: 10.1080/14686996.2020.1746196
[1] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[2] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[3] XUAN Xingyu, QU Shaopeng, ZHAO Xingya. Preparation and Performance of CeO2@MWCNTs/EP Composite Coatings[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[4] SHI Jian, HU Xuewen, HE Bo, PU Hong, GUO Rui, WANG Fei. Effect of Cr-Sb Addition on Atmospheric Corrosion Resistance of Economical High Weathering Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1159-1164.
[5] HU Jiezhen, LAN Wenjie, DENG Peichang, WU Jingquan, ZENG Junhao. Corrosion Behavior of E690 Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[6] LI Jiayuan, ZENG Tianhao, LIU Youtong, WU Xiaochun. Corrosion Behavior of 4Cr16Mo Martensite Stainless Steel with 1% Cu Addition by Applied Stress[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[7] GU Yuhui, DONG Liang, SONG Qinfeng. Preparation of Micro Metal Oxide pH Electrode and Its Application in Corrosion and Protection[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[8] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[9] LIU Wei. Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[10] CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[11] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[12] LI Tianyu, WANG Weikang, LI Yangtao, BAO Tengfei, ZHAO Mengfan, SHEN Xinxin, NI Lei, MA Qinglei, TIAN Huiwen. Corrosion Failure Mechanism of Ultra-high-performance Concretes Prepared with Sea Water and Sea Sand in an Artificial Sea Water Containing Sulfate[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[13] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[14] GAO Qiuying, ZENG Wenguang, WANG Heng, LIU Yuancong, HU Junying. Effect of Fluid Scouring on Sulfate Reducting Bacteria Induced Corrosion of Pipeline Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[15] CHEN Zhenyu, ZHU Zhongliang, MA Chenhao, ZHANG Naiqiang, LIU Yutong. Effect of Different Loading Conditions on Corrosion Fatigue Crack Growth Rate of Nickel Base Alloy 617 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
No Suggested Reading articles found!