Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (3): 561-568    DOI: 10.11902/1005.4537.2022.156
Current Issue | Archive | Adv Search |
Erosion Corrosion Behavior in Flowing Seawater for 70Cu-30Ni Alloy Pipelines with Chemical Conversion Film Preformed in Flowing FeSO4 Solution
YANG Xinyu1,2, LI Zhen1, DUAN Tigang1(), HUANG Guosheng1, MA Li1, LIU Feng1, JIANG Dan1
1.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
2.College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
Download:  HTML  PDF(3742KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A pre-chemical conversion film on the inner walls of 70Cu-30Ni alloy pipeline was first prepared with a flowing FeSO4 solution, and then of which the erosion corrosion behavior in flowing seawater of various speeds was investigated by means of seawater circulation loop. The result showed that a chemical conversion film is obtained during the immersing- and flushing-process of the 200 mg/L FeSO4 solution in conditions: flowing speed 0.5 m/s, pH 6.0, at 25 °C for 30 d, which is a composite film composed of an inner layer of NiO-Ni(OH)2, a compact middle layer of Cu2O-FeOOH and a loose outer layer of Fe2O3-FeOOH. Long-term seawater erosion corrosion test results showed that being suffered from flowing sea water of 0.5 and 1.5 m/s, the chemical conversion film covered pipe lines display relative sound anticorrosion performance with only slightly thinning of the top loose layer of the film, while with the increasing seawater flowing rate up to 2.5 m/s the loose layer on top of the conversion film is significantly thinned with locally spalling off, thus exposing the compact middle layer underneath. XPS analysis results showed that the chemical conversion films had been suffered from erosion corrosion of high-speed flowing seawater display higher amount of Ni, Cu2O and FeOOH on the conversion film surface. Electrochemical impedance results showed that the charge transfer resistances of the chemical conversion films varied in the following descending order: from 2.28×105 Ω·cm2, 8.77×104 Ω·cm2 to 6.51×104 Ω·cm2, after being subjected to erosion-corrosion test by seawater of flowing speeds of 0.5, 1.5 to 2.5 m/s, respectively.

Key words:  70Cu-30Ni alloy pipeline      ferrous sulfate preforming film      anticorrosive Cu2O-FeOOH composite film      long-term erosion corrosion     
Received:  19 May 2022      32134.14.1005.4537.2022.156
ZTFLH:  TG174.4  
Corresponding Authors:  DUAN Tigang, E-mail: duantigang@sunrui.net

Cite this article: 

YANG Xinyu, LI Zhen, DUAN Tigang, HUANG Guosheng, MA Li, LIU Feng, JIANG Dan. Erosion Corrosion Behavior in Flowing Seawater for 70Cu-30Ni Alloy Pipelines with Chemical Conversion Film Preformed in Flowing FeSO4 Solution. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 561-568.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.156     OR     https://www.jcscp.org/EN/Y2023/V43/I3/561

Fig.1  Photographs of 70Cu-30Ni with FeSO4 films preformed after treatment for 4 d (a), 20 d (b) and 30 d (c)
Fig.2  SEM images of FeSO4 films preformed on 70Cu-30Ni after treatment for 4 d (a), 20 d (b) and 30 d (c)
Fig.3  Corrosion morphologies of 70Cu-30Ni with preformed FeSO4 films after erosion for 3 months at the flow rates of 0.5 m/s (a), 1.5 m/s (b) and 2.5 m/s (c)
Fig.4  SEM images of 70Cu-30Ni with preformed FeSO4 film after erosion for 3 months at the flow rates of 0.5 m/s (a), 1.5 m/s (b) and 2.5 m/s (c)
Fig.5  XPS results of the film preformed on 70Cu-30Ni after 30 d treatment: (a) depth profiles of main elements, and fine spectra of (b) Cu 2p, (c) Ni 2p and (d) Fe 2p
Fig.6  XPS results of 70Cu-30Ni with preformed FeSO4 film after erosion at different flow rates: (a) survey scanning spectra and fine spectra of (b) Cu 2p, (c) Ni 2p and (d) Fe 2p
Flow rate m·s-1O 1sMn 2pFe 2pNi 2pCu 2p
0.591.300.835.311.181.38
1.592.400.784.571.121.13
2.589.911.135.591.531.84
Table 1  XPS analysis results of preformed FeSO4 film on 70Cu-30Ni after three-month erosion.
Fig.7  Potentiodynamic polarization curves of 70Cu-30Ni with preformed FeSO4 film after erosion at different flow rates
Fig.8  EIS plots of 70Cu-30Ni with preformed FeSO4 film after erosion at different flow rate
Flow rate / m·s-1Rs / Ω·cm2Rc1 / Ω·cm2Cc1 / F·cm-2Rc2 / Ω·cm2Qc2 / F·cm-2nc2Rct / Ω·cm2Qdl / F·cm-2n
025.71582.07×10-79075.85×10-70.832.37×1052.98×10-50.46
0.522.52052.98×10-98.57×1031.13×10-60.732.28×1056.91×10-60.46
1.519.029.46.13×10-99051.16×10-50.828.77×1043.70×10-60.48
2.526.55.971.73×10-66493.17×10-50.836.51×1042.54×10-50.48
Table 2  Fitting results of EIS of 70Cu-30Ni with preformed FeSO4 film after erosion at different
Fig.9  Illustrations of the formation process and erosion corrosion mechanism of FeSO4 film on 70Cu-30Ni pipeline alloy
1 Huang L Q, Wu X W. Application of the ablate pipe in the marine seawater pipe system [J]. Ship Boat, 2011, 22(1): 40
黄璐琼, 武兴伟. 铜镍合金管在舰船海水管系中的应用 [J]. 船舶, 2011, 22(1): 40
2 Guo F, Yuan F S, Wang T T. Market analysis and development ideas of copper-alloy condenser tube in our country [J]. Nonferrous Met. Eng. Res., 2015, 36(5): 37
郭 峰, 袁孚胜, 王彤彤. 我国铜合金冷凝管市场分析及发展思路 [J]. 有色冶金设计与研究, 2015, 36(5): 37
3 Lu J, Wu J Y. Review on research and application of Cu-Ni alloys [J]. Nonferrous Met. Mater. Eng., 2020, 41(3): 55
陆 菁, 武家艳. 铜镍合金的研究及其应用综述 [J]. 有色金属材料与工程, 2020, 41(3): 55
4 Chang Q P, Chen Y Y, Song F, et al. Corrosion properties of B30 Cu-Ni alloy and 316L stainless steel in a heat pump system [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 544
常钦鹏, 陈友媛, 宋 芳 等. B30铜镍合金和316L不锈钢在热泵系统中的耐腐蚀性能 [J]. 中国腐蚀与防护学报, 2014, 34: 544
doi: 10.11902/1005.4537.2013.221
5 Chen H L, Ma L, Huang G S, et al. Effect of dissolved oxygen and flow rate of seawater on film formation of B30 Cu-Ni alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 724
陈翰林, 马 力, 黄国胜 等. 溶解氧和流速对B30铜镍合金在海水中成膜的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 724
doi: 10.11902/1005.4537.2021.260
6 Asrar N, Malik A U, Ahmad S, et al. Early failure of cupro-nickel condenser tubes in thermal desalination plant [J]. Desalination, 1998, 116: 135
doi: 10.1016/S0011-9164(98)00190-8
7 Liao Q H. The analysis on the reason of earlier corrosion invalidation of Bfe30-1-1 white brown pipe [J]. Northwest China Electr. Power, 2004, 32(4): 70
廖庆华. Bfe30-1-1白铜管早期腐蚀失效原因分析 [J]. 西北电力技术, 2004, 32(4): 70
8 Wang H T, Qi L M, Wang Y. Cause analysis to copper pipe corrosion of No. 3 unit condenser, Haibowan Power Plant [J]. Inner Mongolia Electr. Power, 2007, 25(): 22
王海涛, 祁利明, 王 勇. 海勃湾发电厂3号机组凝汽器铜管腐蚀原因分析 [J]. 内蒙古电力技术, 2007, 25(): 22
9 Sang J Z, Liu K C, Wang X P, et al. Cause analysis and prevention measures on corrosion of white copper condenser tubes [J]. Turb. Technol., 2009, 51: 393
桑俊珍, 刘克成, 王晓攀 等. 凝汽器白铜管腐蚀原因分析及防止措施 [J]. 汽轮机技术, 2009, 51: 393
10 Fang G Q, Yang H, Yang R. Comparison analysis and discussion of shell side flow and heat transfer by CFD and HTRI [J]. Dev. Appl. Mater., 2016, 31(2): 10
方国强, 杨 辉, 杨 瑞. 冷凝器传热管腐蚀失效分析 [J]. 材料开发与应用, 2016, 31(2): 10
11 Zhu X L, Lin L Y, Lei T Q. Process of formation of corrosion films on alloy 70Cu-30Ni seawater [J]. Acta Metall. Sin., 1997, 33: 1256
朱小龙, 林乐耘, 雷廷权. 70Cu-30Ni合金海水腐蚀产物膜形成过程 [J]. 金属学报, 1997, 33: 1256
12 Liu S F, Lin L Y. Transforming behavior of surface film of Cu-Ni alloy exposed to seawater [J]. Chin. J. Mater. Res., 1998, 12: 20
刘少峰, 林乐耘. Cu-Ni合金表面膜在海水中的转化行为 [J]. 材料研究学报, 1998, 12: 20
13 Hua Q. Studies on B30 copper nickel alloy corrosion product film in artificial seawater [D]. Harbin: Harbin Engineering University, 2014
华 清. B30铜镍合金在人工海水中腐蚀产物膜的研究 [D]. 哈尔滨: 哈尔滨工程大学, 2014
14 Ma A L, Jiang S L, Zheng Y G, et al. Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater: Composition/structure and formation mechanism [J]. Corros. Sci., 2015, 91: 245
doi: 10.1016/j.corsci.2014.11.028
15 Li X, Guo J K, Zhao Y. Comparison and analysis of condenser tube film quality with different film forming agent [J]. North China Electr. Power, 2006, (3): 13
李 兴, 郭军科, 赵 迎. 凝结器铜管不同成膜剂膜质的比较分析 [J]. 华北电力技术, 2006, (3): 13
16 Kang T Y, Yang S D. Application and study of FeSO4 film for condenser copper tube [J]. Corros. Sci. Prot. Technol., 2004, 16: 57
康桃英, 杨尚东. 凝汽器铜管FeSO4成膜的应用与研究 [J]. 腐蚀科学与防护技术, 2004, 16: 57
17 Chen G, Zhang Y X, Liu H B. The principles and implementation of film coating technology with ferrous sulfate to condenser brass pipes [J]. Northeast Electr. Power Technol., 2005, 26(2): 34
陈 刚, 张羽翔, 刘宏斌. 凝汽器铜管硫酸亚铁镀膜原理与实践 [J]. 东北电力技术, 2005, 26(2): 34
18 Pearson C. Role of iron in the inhibition of corrosion of marine heat exchangers-a review [J]. Br. Corros. J., 1972, 7: 61
doi: 10.1179/000705972798323288
19 Beccaria A M, Crousier J. Influence of iron addition on corrosion layer built up on 70Cu-30Ni alloy in sea water [J]. Br. Corros. J., 1991, 26: 215
doi: 10.1179/000705991798269189
20 Hargrave R E. Unusual failures involving copper deposition in boiler tubing [J]. Corrosion, 1991, 47: 555
doi: 10.5006/1.3585292
21 Ma Q G, Xiao W, Chen S X, et al. Cathodic protection of pure iron for B10 and B30 copper alloys in simulated marine environment [J]. Corros. Prot., 2016, 37: 793
马启国, 肖 稳, 陈散兴 等. 纯铁对B10和B30铜合金在模拟海洋环境中的阴极保护 [J]. 腐蚀与防护, 2016, 37: 793
22 Shi H X. Research on Fe2SO4 once filming technology for copper tubes of small batch [J]. Hebei Electr. Power, 2003, 22(1): 21
史海象. 小批量铜管Fe2SO4一次成膜技术研究 [J]. 河北电力技术, 2003, 22(1): 21
23 North R F, Pryor M J. The protection of Cu by ferrous sulphate additions [J]. Corros. Sci., 1968, 8: 149
doi: 10.1016/S0010-938X(68)80197-0
24 Wang S. Research on Fe2SO4 once filming technology for copper tubes [J]. Inner Mongolia Sci. Technol. Econ., 2007, (5): 92
王 栓. 铜管Fe2SO4一次成膜技术研究 [J]. 内蒙古科技与经济, 2007, (5): 92
25 Deng C P, Huang B Y, Yin Z M, et al. The corrosion mechanism of failure of copper-nickel condenser tubes coated by ferrisulphas [J]. Nat. Sci. J. Xiangtan Univ., 2006, 28(4): 85
邓楚平, 黄伯云, 尹志民 等. 硫酸亚铁成膜失效的镍白铜冷凝管腐蚀机理分析 [J]. 湘潭大学自然科学学报, 2006, 28(4): 85
26 Wang Z Y, Wang P. An approach to enhancing film formation quality on copper tubes in condenser by using ferrous sulfate only at once [J]. Therm. Power Gener., 2010, 39(6): 71
王朝阳, 王 平. 提高凝汽器铜管硫酸亚铁一次性成膜质量 [J]. 热力发电, 2010, 39(6): 71
27 Bautista B E T, Carvalho M L, Seyeux A, et al. Effect of protein adsorption on the corrosion behavior of 70Cu-30Ni alloy in artificial seawater [J]. Bioelectrochemistry, 2014, 97: 34
doi: 10.1016/j.bioelechem.2013.10.004 pmid: 24177137
[1] FAN Yufang, ZHANG Yafei, YIN Liusen, ZHAO Conghui, HE Yanbin, ZHANG Chuanxiang. Research Progress on Carbon Dots in Field of Metal Corrosion and Protection[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[2] . Effect of hot rolled oxide scale on evolution of fast-stabilized rust layer and corrosion resistance of weathering steel[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[3] . Effect of Electrical Parameters on Energy Consumption and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Magnesium Alloy[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[4] YAO Yong, LIU Guojun, LI Shizhu, LIU Miaoran, CHEN Chuan, HUANG Tingcheng, LIN Hai, LI Zhanjiang, LIU Yuwei, WANG Zhenyao. Research Progress on Corrosion Prediction Model of Metallic Materials for Electrical Equipment[J]. 中国腐蚀与防护学报, 2023, 43(5): 983-991.
[5] LI Shuli, DENG Shuduan, LI Xianghong. Research Progress and Prospects of Plant Corrosion Inhibitors for Aluminum[J]. 中国腐蚀与防护学报, 2023, 43(5): 929-947.
[6] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[7] LI Haiyan, LIU Huan, WANG Geyi, ZHANG Xiuju, CHEN Tongzhou, YU Yun, YAO Hong. Review on Erosion-wear and Protection of Heat Exchange Surface in Power Station Boilers[J]. 中国腐蚀与防护学报, 2023, 43(5): 957-970.
[8] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[9] CHEN Qingguo, TANG Quanhong, QIN Zhenjie, LI Yifan, LI Lei, LI Xuanpeng, YUAN Juntao, SU Hang, FU Anqing. Corrosion Behavior of Hot-dip Aluminum Coating in “High Temperature-salt Deposited-CO2/O2” Multi-degree Coupling Environment[J]. 中国腐蚀与防护学报, 2023, 43(3): 569-577.
[10] LIU Yuxiang, XU Anyang. Characterization of Pitting Corrosion Behavior of AZ91 Mg-alloy without and with MAO Coating[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.
[11] CAO Jingyi, ZANG Bolin, CAO Baoxue, LI Liang, FANG Zhigang, ZHENG Hongpeng, LIU Li, WANG Fuhui. Influence of Chemical Bonding Interface of Modified Basalt/epoxy Coating on Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(6): 1009-1015.
[12] LI Yuqiao, SI Weiting, GAO Rongjie. Preparation of Superamphiphobic Surface on Al-alloy and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(6): 966-972.
[13] LIAN Yubo, ZHANG Qingzhu, HAN Chuanghui, LI Wenjuan, WENG Huatao, JIANG Wei. Inhibition Behavior of a Nano-corrosion Inhibitor Capsule Prepared from MOFs and BTA for Copper[J]. 中国腐蚀与防护学报, 2022, 42(6): 1058-1064.
[14] ZHANG Zhengyang, GUO Zixin, ZHOU Xin, SUN Haijing, SUN Jie. Preparation and Performance of Epoxy Resin Coating with Benzotriazole Inhibitor Charged Nano-halloysite Tubes[J]. 中国腐蚀与防护学报, 2022, 42(4): 705-708.
[15] CHEN Jiaqi, HOU Daolin, XIAO Han, GAO Yuwei, DONG Sheying. Corrosion Inhibition on Carbon Steel in Acidic Solution by Carbon Dots Prepared from Waste Longan Shells[J]. 中国腐蚀与防护学报, 2022, 42(4): 629-637.
No Suggested Reading articles found!