Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 1009-1015    DOI: 10.11902/1005.4537.2021.312
Current Issue | Archive | Adv Search |
Influence of Chemical Bonding Interface of Modified Basalt/epoxy Coating on Its Corrosion Resistance
CAO Jingyi1, ZANG Bolin1, CAO Baoxue1, LI Liang1, FANG Zhigang1, ZHENG Hongpeng2, LIU Li2(), WANG Fuhui2
1. Unit 92228, People's Liberation Army, Beijing 100072, China
2. Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
Cite this article: 

CAO Jingyi, ZANG Bolin, CAO Baoxue, LI Liang, FANG Zhigang, ZHENG Hongpeng, LIU Li, WANG Fuhui. Influence of Chemical Bonding Interface of Modified Basalt/epoxy Coating on Its Corrosion Resistance. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1009-1015.

Download:  HTML  PDF(7613KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Due to the surface smoothness and chemical inertia of basalt flakes, the interfacial bond strength of basalt flake/epoxy resin is poor. In this paper, the basalt flakes were chemically modified by silane coupling agent (KH550) to prepare the modified basalt (MB) flakes. The bare and modified basalt flakes were characterized by FT-IR and SEM/EDS. The dispersibility and compatibility of MB flakes in epoxy resin were examined by sedimentation test and cross-sectional microstructure observation of the prepared flakes/epoxy coating. The adhesion and anti-corrosion properties of MB flakes/epoxy coating were investigated using adhesion test and EIS technology, respectively. The results show that the chemical modification makes the surface of basalt flakes being chemically bonded with KH550, and which is beneficial to the formation the chemical bond interface of MB flakes/epoxy coating, leading to improve the compatibility of MB flakes with epoxy resin, therewith increase the barrier performance and adhesion of the coating, as a result, enhance the anti-corrosion performance of the modified epoxy coating.

Key words:  silane coupling agent      modified basalt      epoxy resin      chemical bonded     
Received:  03 November 2021     
ZTFLH:  TG174.46  
Fund: National Key R&D Program of China(2019YFC0312100)
About author:  LIU Li, E-mail: liuli@mail.neu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.312     OR     https://www.jcscp.org/EN/Y2022/V42/I6/1009

Fig.1  FT-IR spectra of KH550, Basalt and MB scales
Fig.2  SEM images of MB scales at low (a) medium (b) and high (c) magnifications, and EDS surface scannings of Si (d), O (e) and N (f)
Fig.3  Adhesion strengths of B/EP and MB/EP coatings after immersion for different time
Fig.4  Equivalent electrical circuits of the coating/steel system after immersion for different time: (a) one time constant, (b) two time constants
Fig.5  Bode (a, c) and Nyquist (b, d) plots of B/EP (a, b) and MB/EP (c, d) coatings after immersion for different time
Fig.6  Variations of Cc (a), Rc (b) and Rt (c) of B/EP and MB/EP coatings with immersion time
Fig.7  Digital images of Basalt (a) and MB (b) scales dispersed in epoxy resin after static settlement for different time
Fig.8  SEM images of the surfaces (a1, b1) and cross sections (a2, b2) of B/EP coating (a1, a2) and MB/EP coating (b1, b2)
[1] Khan A, Ubaid F, Fayyad E M, et al. Synthesis and properties of polyelectrolyte multilayered microcapsules reinforced smart coatings [J]. J. Mater. Sci., 2019, 54: 12079
doi: 10.1007/s10853-019-03761-9
[2] Liu S Y, Liu L, Meng F D, et al. Protective performance of polyaniline-sulfosalicylic acid/epoxy coating for 5083 aluminum [J]. Materials, 2018, 11: 292
doi: 10.3390/ma11020292
[3] Funke W. Problems and progress in organic coatings science and technology [J]. Prog. Org. Coat., 1997, 31: 5
doi: 10.1016/S0300-9440(97)00013-1
[4] Cao J Y, Wang Z Q, Li L, et al. Failure mechanism of organic coating with modified graphene under simulated deep-sea alternating hydrostatic pressure [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 139
(曹京宜, 王智峤, 李亮 等. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制 [J]. 中国腐蚀与防护学报, 2020, 40: 139)
[5] Alhumade H, Nogueira R P, Yu A, et al. Role of surface functionalization on corrosion resistance and thermal stability of epoxy/glass flake composite coating on cold rolled steel [J]. Prog. Org. Coat., 2018, 122: 180
[6] Barbhuiya S, Choudhury M I. Nanoscale characterization of glass flake filled vinyl ester anti-corrosion coatings [J]. Coatings, 2017, 7: 116
doi: 10.3390/coatings7080116
[7] Sathiyanarayanan S, Azim S S, Venkatachari G. Corrosion protection coating containing polyaniline glass flake composite for steel [J]. Electrochim. Acta, 2008, 53: 2087
doi: 10.1016/j.electacta.2007.09.015
[8] Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of m-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
(栾浩, 孟凡帝, 刘莉 等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161)
[9] Zhai L L, Ling G P. The adhesion between polymer coating and metal and its research progress [J]. Mater. Rev., 2005, 19(7): 79
(翟兰兰, 凌国平. 高分子涂层与金属的附着力及其研究进展 [J]. 材料导论, 2005, 19(7): 79)
[10] Yamabe H. Stabilization of the polymer-metal interface [J]. Prog. Org. Coat., 1996, 28: 9
doi: 10.1016/0300-9440(95)00587-0
[11] Ghaffari M, Ehsani M, Khonakdar H A. Morphology, rheological and protective properties of epoxy/nano-glassflake systems [J]. Prog. Org. Coat., 2014, 77: 124
[12] Miszczyk A, Szalinska H. Laboratory evaluation of epoxy coatings with an adhesion promoter by impedance [J]. Prog. Org. Coat., 1995, 25: 357
doi: 10.1016/0300-9440(95)00550-X
[13] Han H L, Li H Q, Liu M Y, et al. Effect of “bridge” on the performance of organic-inorganic crosslinked hybrid proton exchange membranes via KH550 [J]. J. Power Sources, 2017, 340: 126
doi: 10.1016/j.jpowsour.2016.11.066
[14] Yu Y, Zhang Y X, Chen Y, et al. Kinetics of anorthite dissolution in basaltic melt [J]. Geochim. Cosmochim. Acta, 2016, 179: 257
doi: 10.1016/j.gca.2016.02.002
[15] Wang S, Chia P J, Chua L L, et al. Band-like transport in surface-functionalized highly solution-processable graphene nanosheets [J]. Adv. Mater., 2008, 20: 3440
doi: 10.1002/adma.200800279
[16] Yu C H, Al-Saadi A, Shih S J, et al. Immobilization of BSA on silica-coated magnetic iron oxide nanoparticle [J]. J. Phys. Chem. C, 2009, 113: 537
doi: 10.1021/jp809662a
[17] Yu C H, Caiulo N, Lo C C H, et al. Synthesis and fabrication of a thin film containing silica-encapsulated face-centered tetragonal FePt nanoparticles [J]. Adv. Mater., 2006, 18: 2312
doi: 10.1002/adma.200600802
[18] Di H H, Yu Z X, Ma Y, et al. Corrosion-resistant hybrid coatings based on graphene oxide-zirconia dioxide/epoxy system [J]. J. Taiwan Inst. Chem. Eng., 2016, 67: 511
doi: 10.1016/j.jtice.2016.08.008
[19] Araujo W S, Margarit I C P, Ferreira M, et al. Undoped polyaniline anticorrosive properties [J]. Electrochim. Acta, 2001, 46: 1307
doi: 10.1016/S0013-4686(00)00726-X
[20] Kavitha C, Narayanan T S N S, Ravichandran K, et al. Deposition of zinc-zinc phosphate composite coatings on aluminium by cathodic electrochemical treatment [J]. Surf. Coat. Technol., 2014, 258: 539
doi: 10.1016/j.surfcoat.2014.08.040
[21] Martí M, Fabregat G, Azambuja D S, et al. Evaluation of an environmentally friendly anticorrosive pigment for alkyd primer [J]. Prog. Org. Coat., 2012, 73: 321
doi: 10.1016/j.porgcoat.2011.10.017
[22] Alibakhshi E, Ghasemi E, Mahdavian M, et al. Active corrosion protection of Mg-Al-PO43- LDH nanoparticle in silane primer coated with epoxy on mild steel [J]. J. Taiwan Inst. Chem. Eng., 2017, 75: 248
doi: 10.1016/j.jtice.2017.03.010
[23] Alibakhshi E, Ghasemi E, Mahdavian M, et al. A comparative study on corrosion inhibitive effect of nitrate and phosphate intercalated Zn-Al-layered double hydroxides (LDHs) nanocontainers incorporated into a hybrid silane layer and their effect on cathodic delamination of epoxy topcoat [J]. Corros. Sci., 2017, 115: 159
doi: 10.1016/j.corsci.2016.12.001
[24] Liu C, Bi Q, Leyland A, et al. An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modelling [J]. Corros. Sci., 2003, 45: 1243
doi: 10.1016/S0010-938X(02)00213-5
[25] Zhang Y J, Shao Y W, Zhang T, et al. The effect of epoxy coating containing emeraldine base and hydrofluoric acid doped polyaniline on the corrosion protection of AZ91D magnesium alloy [J]. Corros. Sci., 2011, 53: 3747
doi: 10.1016/j.corsci.2011.07.021
[1] CAO Jingyi, LI Jing, YIN Wenchang, MENG Fandi, LIU Li. Histamine-modified Epoxy Resin and its Effect on Properties of Organic Coatings[J]. 中国腐蚀与防护学报, 2024, 44(1): 151-158.
[2] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[3] YU Fang, WANG Xiang, ZHANG Zhao. Research Progress of Nanofillers for Epoxy Anti-corrosion Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 220-230.
[4] GE Chengyue, LUO Xiangping, WANG Jing, DUAN Jizhou, WANG Ning, HOU Baorong. Properties of KH550 and Hydroxyl Silicone Oil Co-modified Epoxy Resin and Its Mg-rich Primer[J]. 中国腐蚀与防护学报, 2022, 42(4): 590-596.
[5] SUN Weisong, YU Sirong, GAO Song, YAO Xinkuan, XU Hailiang, QIAN Bing, WANG Bingzi. Molecular Dynamics Simulation of Water Molecule Diffusion in Graphene-reinforced Epoxy Resin Anticorrosive Coatings[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
[6] FU Haibo, LIU Xiaoru, SUN Yuan, CAO Dali. Corrosion Resistance of Epoxy Resin/recrystallized Silicon Carbide Composite[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[7] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[8] Yinze ZUO, Liang CHEN, Qing FENG, Yanmin GAO. Effect of Self-assembly Film of PFOA/Silane Coupling Agent on Properties of Epoxy Rust-tolerant Coating Applied on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 554-560.
[9] Xuejun CUI,Xin DAI,Bingyu ZHENG,Yingjun ZHANG. Effect of KH-550 Content on Structure and Properties of a Micro-arc Oxidation Coating on Mg-alloy AZ31B[J]. 中国腐蚀与防护学报, 2017, 37(3): 227-232.
[10] Mingjun CUI,Siming REN,Guang'an ZHANG,Shuan LIU,Haichao ZHAO,Liping WANG,Qunji XUE. Corrosion Performance of Hexagonal Boron Nitride Doped Waterborne Epoxy Coating[J]. 中国腐蚀与防护学报, 2016, 36(6): 566-572.
[11] Haiqiang LIN, Ke CHAI, Jinyi WU, Pengpeng YANG, Chunlei SONG. Antibacterial Performance of Epoxy Resin Coatings with Carbon Fiber Reinforcement in High Voltage Pulsed Electric Field[J]. 中国腐蚀与防护学报, 2015, 35(5): 438-446.
[12] CAI Zongping LV Dongsheng LI Weishan LIANG Ying. EFFORT OF SILANE COUPLING AGENTS ON THE ADHERENCE OF MAGNESIUM ELECTRODE[J]. 中国腐蚀与防护学报, 2009, 29(3): 199-204.
[13] CHEN Zhonghua TANG Ying YU Fei. PROPERTIES OF AN ENVIRONMENTALLY FRIENDLY WATERBORNE ANTISTATIC ANTICORROSIVE PAINT[J]. 中国腐蚀与防护学报, 2009, 29(2): 113-118.
[14] Yawei Shao; Ying Li; Fuhui Wang; Yuanlong Du. Effect of nano-Ti pigment on the corrosion resistance of an epoxy coating[J]. 中国腐蚀与防护学报, 2006, 26(2): 115-120 .
[15] Wei Ke. MEDIUM TRANSPORT BEHAVIOR OF EPOXY POWDERCOATING IN HIGH TEMPERATURE SOLUTION[J]. 中国腐蚀与防护学报, 2001, 21(1): 40-45 .
No Suggested Reading articles found!