Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (2): 331-337    DOI: 10.11902/1005.4537.2021.061
Current Issue | Archive | Adv Search |
Corrosion of Stainless Steel Shell of Embedded Sensor in Tailings Pond
WANG Qixuan1, LYU Wensheng2(), YANG Peng2,3, ZHU Liyi2, LIAO Wenjing1, ZHU Yuanle1
1.State Key Laboratory of Safety Technology for Metal Mines, Changsha Institute of Mining Research Co. Ltd. , Changsha 410012, China
2.Beijing University of Science and Technology College of Civil Engineering and Resources, Beijing 100083, China
3.Key Laboratory of Beijing Information Service Engineering, Beijing Union University, Beijing 100101, China
Download:  HTML  PDF(8748KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aiming at the problem related with serious corrosion and large economic loss of embedded monitoring instruments or sensors in different underground environments, the corrosion behavior of shell material (316L stainless steel) of embedded monitoring sensors in acid- and brine-containing simulated environments of tailings ponds were studied by means of coupon immersion with mass loss method, electrochemical measurement and scanning electron microscopy (SEM). The results show that in the acid containing artificial solution of pH1.5, the passive film is gradually formed on the 316 SS surface in a short period of time, and the corrosion resistance is getting better and better. However, the corrosion resistance of the 316SS is slightly reduced after a long-term immersion corrosion. In the artificial solution containing mixed sulfuric acid and brine of pH3, and that containing brine of pH7.5 respecyively, the corrosion resistance of the 316SS is better in the short term The existence of corrosive Cl- in brine accelerated the dissolution and destruction of the passive film, and the corrosion resistance decreased significantly.

Key words:  tailings pond      316L stainless steel      corrosion rate      polarization curve      electrochemical impedance spectroscopy     
Received:  26 March 2021     
ZTFLH:  TG174  
Fund: National Key Research and Development Program of China(2017YFC0804604);Work Safety Prevention and Emergency Project of Emergency Management Department of Hunan Province(Hunan-201905)
Corresponding Authors:  LYU Wensheng     E-mail:  sunluw@sina.com
About author:  LYU Wensheng, E-mail: sunluw@sina.com

Cite this article: 

WANG Qixuan, LYU Wensheng, YANG Peng, ZHU Liyi, LIAO Wenjing, ZHU Yuanle. Corrosion of Stainless Steel Shell of Embedded Sensor in Tailings Pond. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 331-337.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.061     OR     https://www.jcscp.org/EN/Y2022/V42/I2/331

Fig.1  Shape and sizes of 316L stainless steel sample
pHNa+K+Ca2+Mg2+Cl-SO42-NO3-
310978.3373.4741.61607.316016.04076.338.0
7.59469.9340.31311.11250.015931.42333.638.7
Table 1  Concentrations of main ions in pH3 and pH7.5 corrosion simulation solutions (mg·L-1)
Fig.2  General view (a) and high magnification (b) view of the surface of 316L stainless steel sample before immersion test
Fig.3  Surface morphologies of 316L stainless steel after immersion for 7 d in the simulated solutions with pH1.5 (a), pH3 (b) and pH7.5 (c)
Fig.4  Surface morphologies of 316L stainless steel sample after immersion for 4 m (a1, b1, c1) and 12 m (a2, b2, c2) in pH1.5 (a), pH3 (b) and pH7.5 (c) simulated solutions
Fig.5  Variations of corrosion rate of 316L stainless steel with immersion time in three simulated solutions
Fig.6  Polarization curves of 316L stainless steel after immersion for different time in pH1.5 (a), pH3 (b) and pH7.5 (c) simulated solutions
pHSoaking time / dEbVSCEEcorrVSCEIcorrμA∙cm-2pHSoaking time / dEbVSCEEcorrVSCEIcorrμA∙cm-2pHSoaking time / dEbVSCEEcorrVSCEIcorrμA∙cm-2
00.763-0.1471.41000.256-0.3261.93300.224-0.1670.096
70.7950.0160.11670.3900.0340.02770.541-0.0450.106
150.8010.0340.148150.512-0.1210.018150.353-0.0860.127
1.5300.8400.1600.1203300.525-0.1160.1537.5300.477-0.1330.038
600.8360.0230.191600.4200.0270.082600.550-0.0800.071
1200.8100.1110.1031200.397-0.1650.1701200.456-0.1760.171
3600.8120.0130.2613600.480-0.2940.8753600.530-0.2390.698
Table 2  Fitting electrochemical parameters of polarization curves of 316L stainless steel after immersion for different time in three simulated solutions
Fig.7  Nyquist (a, c, e) and Bode (b, d, f) diagrams of 316L stainless steel samples after immersion for different time in three simulated solutions with pH1.5 (a, b), pH3 (c, d) and pH7.5 (e, f)
Fig.8  Equivalent circuit diagram of EIS
pH

Soaking

time

Rs

Ω·cm2

C1

Ω-1·cm-2·s-n

R1

Ω·cm2

C2

Ω-1·cm-2·s-n

R2

Ω·cm2

1.50 d4.83×1021.99×10-47.40×1033.04×10-42.29×104
7 d5.47×1029.97×10-51.34×1044.08×10-52.87×105
15 d6.78×1021.23×10-41.36×1045.41×10-52.23×105
30 d7.16×1019.63×10-54.26×1034.15×10-51.83×105
60 d8.49×1019.68×10-55.94×1034.38×10-53.17×105
120 d7.11×1017.32×10-55.86×1033.44×10-54.57×105
360 d1.01×1028.84×10-51.16E+044.55×10-51.39×105
30 d4.15×1011.17×10-44.17×1032.39×10-42.20×104
7 d4.02×1016.12×10-51.75×1034.81×10-52.25×105
15 d4.54×1015.49×10-52.70×1034.30×10-51.86×105
30 d3.36×1015.26×10-51.60×1035.31×10-52.44×105
60 d2.12×1026.70×10-55.83×1034.93×10-53.46×105
120 d3.51×1014.86×10-52.48×1035.82×10-51.36×105
360 d5.59×1019.49×10-52.97×1039.19×10-51.01×105
7.50 d4.15×1012.85×10-51.07×1042.20×10-51.65×105
7 d4.91×1023.03×10-54.31×1043.56×10-51.68×105
15 d4.50×1013.04×10-57.90×1032.21×10-51.21×105
30 d3.64×1012.20×10-51.48×1041.16×10-54.98×105
60 d4.97×1012.52×10-51.45×1041.02×10-57.36×105
120 d3.98×1013.08×10-51.03×1042.33×10-51.97×105
360 d4.88×1013.66×10-51.19×1045.55×10-58.95×104
Table 3  Fitting results of EIS of 316L stainless steel samples immersed for different time in three simulated solutions
Fig.9  Variations of polarization resistance RP of 316L stainless steel with immersion time in pH1.5 (a), pH3 (b) and pH7.5 (c) simulated solutions
1 Rao Y Z, Xu S T, Pan J P, et al. Study on distribution rules of acid mine drainage and heavy metal pollution of sulphide mineral in the waste rock site [J]. J. South. Inst. Metall., 2003, 24(5): 90
饶运章, 徐水太, 潘建平等. 硫化矿废石场酸性废水重金属污染分布规律研究 [J]. 南方冶金学院学报, 2003, 24(5): 90
2 Sun C L. On the current situation of comprehensive utilization of nonferrous metal mineral resources in China [J]. Non-Ferr. Min. Metall., 2005, 21(suppl.): 169
孙成林. 浅谈我国有色金属矿产资源综合利用现状 [J]. 有色矿冶, 2005, 21(): 169
3 Ren S Y. The current situation, problems and countermeasures of comprehensive utilization of nonferrous metal mineral resources in China [J]. China Resour. Compr. Util., 2018, 36(1): 73
任世赢. 我国有色金属矿产资源综合利用的现状、问题及对策 [J]. 中国资源综合利用, 2018, 36(1): 73
4 Guo T F, Wei K M. Research on mining methods and development prospects of metal mines in China [J]. Heilongjiang Sci. Technol. Inf., 2010, (22): 21
郭滕飞, 韦库明. 我国金属矿山开采方法及发展前景研究 [J]. 黑龙江科技信息, 2010, (22): 21
5 Wang H K, Gong W Q, Liu Y Z. Analysis of comprehensive recovery and utilization of solid waste in nonferrous metallic mines [J]. Met. Mine, 2005, (12): 70
王湖坤, 龚文琪, 刘友章. 有色金属矿山固体废物综合回收和利用分析 [J]. 金属矿山, 2005, (12): 70
6 Lam E J, Gálvez M E, Cánovas M, et al. Evaluation of metal mobility from copper mine tailings in northern Chile [J]. Environ. Sci. Pollut. Res., 2016, 23: 11901
7 Licskó I, Lois L, Szebényi G. Tailings as a source of environmental pollution [J]. Water Sci. Technol., 1999, 39: 333
8 Tang Z D, Gao P, Li Y J, et al. Recovery of iron from hazardous tailings using fluidized roasting coupling technology [J]. Powder Technol., 2020, 361: 591
9 Liu S P, Zhang X W. Comprehensive utilization status and countermeasures of metal mine tailings in China [J]. China Resour. Compr. Util., 2020, 38(3): 75
刘淑鹏, 张小伟. 我国金属矿山尾矿综合利用现状及对策 [J]. 中国资源综合利用, 2020, 38(3): 75
10 Zhang S X. Mining Engineering of Mineral Resources [M]. Wuhan: Wuhan Industrial University Press, 2000
张世雄. 矿物资源开发工程 [M]. 武汉: 武汉工业大学出版社, 2000
11 Zhao L, Li G, Wang R X. Treatment techniques and developmental trends of metal mines acid wastewater [J]. China Resour. Compr. Util., 2009, 27(10): 13
赵玲, 李官, 王荣锌. 金属矿山酸性废水治理技术现状与展望 [J]. 中国资源综合利用, 2009, 27(10): 13
12 Peppas A, Komnitsas K, Halikia I. Use of organic covers for acid mine drainage control [J]. Miner. Eng., 2000, 13: 563
13 Chuichulcherm S, Nagpal S, Peeva L, et al. Treatment of metal-containing wastewaters with a novel extractive membrane reactor using sulfate-reducing bacteria [J]. J. Chem. Technol. Biotechnol., 2001, 76: 61
14 Li Y Y, Di X L, Gao J. The status of saline lake lithium resources and its present situation of exploitation [J]. Sea-Lake Salt Chem. Ind., 2005, 34(5): 31
李昱昀, 狄晓亮, 高洁. 国内外盐湖卤水锂资源及开发现状 [J]. 海湖盐与化工, 2005, 34(5): 31
15 Lin Z X, Yang P, Lu W S. Effect of bittern in Shanshandao gold mine on the early strength of cemented backfill block [J]. Met. Mine, 2015, (7): 164
林枝祥, 杨鹏, 吕文生. 三山岛金矿盐卤水对胶结充填体早期强度的影响 [J]. 金属矿山, 2015, (7): 164
16 Di H, Wang L D, Xie F Q. Discussion on hydrochemical characteristics and genesis of underground brine [J]. Coal Chem. Ind., 2016, 39(11): 26
邸贺, 王黎栋, 谢奋全. 地下卤水水化学特征及成因探讨 [J]. 煤炭与化工, 2016, 39(11): 26
17 Li W, Chen C. Extraction technology of ocean mining [J]. China Min. Mag., 2003, 12(1): 44
李伟, 陈晨. 海洋矿产开采技术 [J]. 中国矿业, 2003, 12(1): 44
18 Yang Y K, Xu J, Liang B, et al. Exploitation and utilization of the salt-lake resources in Qinghai [J]. Min. Metall., 2003, 12(1): 67
杨幼坤, 徐军, 梁蓓等. 青海盐湖资源开发与利用 [J]. 矿冶, 2003, 12(1): 67
19 Zhang H, Du N, Zhou W J, et al. Effect of Fe3+ on pitting corrosion of stainless steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 517
张浩, 杜楠, 周文杰等. 模拟海水溶液中Fe3+对不锈钢点蚀的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 517
20 Zhang G Q. Corrosion and protection of 316L stainless steel for offshore oil and gas development project [J]. Paint Coat. Ind., 2020, 50(9): 56
张国庆. 海洋油气开发工程316L不锈钢的腐蚀及防护 [J]. 涂料工业, 2020, 50(9): 56
21 Liu X Y, Zhao Y Z, Zhang H, et al. Effect of chloride concentration in a simulated concrete pore solution on metastable pitting of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 195
刘欣怡, 赵亚州, 张欢等. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 195
22 Wang J G, Li X Y, Gao Y. Research on the chlorion corrosion behavior in long-distance pipeline [J]. China Petrol. Mach., 2014, 42(6): 113
王金刚, 李新义, 高英. 长输管线氯离子腐蚀行为研究 [J]. 石油机械, 2014, 42(6): 113
23 Sun S, Yang J, Qian X Z, et al. Preparation and electrochemical corrosion behavior of electroless Plated Ni-Cr-P alloy coating [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 273
孙硕, 杨杰, 钱薪竹等. Ni-Cr-P化学镀层的制备与电化学腐蚀行为 [J]. 中国腐蚀与防护学报, 2020, 40: 273
[1] LIANG Taihe, ZHU Xuemei, ZHANG Zhenwei, WANG Xinjian, ZHANG Yansheng. Corrosion Performance of Transition Layer at Interface of Oxide Scale/substrate Formed on Austenitic Steel Fe32Mn7Cr3Al2Si During High Temperature Oxidation[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
[2] LI Xujia, HUI Honghai, ZHAO Junwen, WU Guoqiang, DAI Guangze. Effect of MWCNTs Content on Corrosion Resistance of Chromium-free Zinc-aluminum Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 324-330.
[3] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[4] ZHANG Wenli, ZHANG Zhenlong, WU Zhaoliang, HAN Sike, CUI Zhongyu. Effect of Temperature on Pitting Corrosion Behavior of 316L Stainless Steel in Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[5] SUN Baozhuang, ZHOU Xiaocheng, LI Xiaorong, SUN Weilu, LIU Zirui, WANG Yuhua, HU Yang, LIU Zhiyong. Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[6] ZHANG Longhua, LI Changjun, PAN Lei, HAN Sike, WANG Xin, CUI Zhongyu. Corrosion Behavior of 316L Stainless Steel in Simulated Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
[7] YI Guanghui, ZHENG Dajiang, SONG Guangling. Influence of Acid Pickling on Morphology, Optical Parameters and Corrosion Resistance of 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[8] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[9] CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[10] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[11] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[12] GE Pengli, ZENG Wenguang, XIAO Wenwen, GAO Duolong, ZHANG Jiangjiang, LI Fang. Effect of Applied Stress and Medium Flow on Corrosion Behavior of Carbon Steel in H2S/CO2 Coexisting Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[13] JIA Shichao, GAO Jiaqi, GUO Hao, WANG Chao, CHEN Yangyang, LI Qi, TIAN Yimei. Influence of Water Quality on Corrosion of Cast Iron Pipe in Reclaimed Water[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[14] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[15] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
No Suggested Reading articles found!