Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (1): 163-168    DOI: 10.11902/1005.4537.2021.016
Current Issue | Archive | Adv Search |
Corrosion Fatigue Crack Growth Prediction Model Based on Stress Ratio and Threshold for Marine Engineering Steel DH36Z35 in Seawater
LIU Dong1,2, LIU Jing1(), HUANG Feng1, DU Liying2, PENG Wenjie2
1.The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2.R & D Center of Wuhan Iron & Steel Co. Ltd. , Baosteel Central Research Institute, Wuhan 430080, China
Download:  HTML  PDF(2197KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The fatigue crack growth rate of marine engineering structural steel DH36Z35 in air and artificial seawater are comparatively assessed by means of a home-made seawater corrosion fatigue machine by applied stress ratio of 0.1, 0.3 and 0.5 with a frequency of 3 Hz. The results show that the fatigue crack growth rate increases with the increase of stress ratio R under the same ΔK bothin air and artificial seawater, and this phenomenon is especially evident in the near threshold range 1×10-7 mm/cycle≤da/dN≤1×10-6 mm/cycle. When the fatigue crack growth rate (da/dN) is above 1×10-6 mm/cycle, a flection point may emerge on the curve of fatigue crack growth rate measured both in air and seawater. For the case of testing in the seawater, above the flection point the crack growth is accelerated, whereas below which the crack growth is inhibited. The higher the stress ratio is, the higher the fatigue crack rate corresponding to the inflection point is. Based on the difference of test results in air and artificial seawater by different stress ratio and threshold, a modified Walker model for the prediction of corrosion fatigue crack growth rate is established. By the new prediction model, the fatigue crack growth rate by the applied different stress ratio in seawater can be predicted through the fatigue crack growth rate in air.

Key words:  marine engineering structural steel      corrosion      fatigue crack growth rate      stress ratio      artificial seawater     
Received:  22 January 2021     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51871172);Central Government Directs Special Projects for the Development of Local Science and Technology(ZYDD2018026)
Corresponding Authors:  LIU Jing     E-mail:  liujing@wust.edu.cn
About author:  LIU Jing, E-mail: liujing@wust.edu.cn

Cite this article: 

LIU Dong, LIU Jing, HUANG Feng, DU Liying, PENG Wenjie. Corrosion Fatigue Crack Growth Prediction Model Based on Stress Ratio and Threshold for Marine Engineering Steel DH36Z35 in Seawater. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 163-168.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.016     OR     https://www.jcscp.org/EN/Y2022/V42/I1/163

Fig.1  Schematic diagram of corrosion fatigue crack growth rate sample (mm)
Fig.2  Fatigue crack growth rate test underdifferent stress ratios in air and in seawater
Fig.3  da/dNK curves under R =0.1 (a), 0.3 (b) and 0.5 (c) in air and seawater
No.EnvironmentRCmrΔKth
S01Air0.14.313×10-103.7670.9897.49
S02Air0.33.645×10-104.0540.9866.54
S03Air0.54.088×10-93.1280.9934.41
S04Seawater0.14.712×10-103.7330.9729.15
S05Seawater0.32.631×10-104.2480.9537.79
S06Seawater0.51.690×10-104.5380.9616.07
Table 1  Paris model fitting curve equation and the threshold value Δ Kth
Fig.4  da/dN-(ΔKKth) curves underr R=0.1 (a), 0.3 (b) and 0.5 (c) in air and seawater
No.EnvironmentRCmr
S01Air0.16.379×10-71.6280.986
S02Air0.34.051×10-71.9950.997
S03Air0.54.195×10-71.5810.996
S04Seawater0.11.480×10-61.4100.975
S05Seawater0.32.576×10-61.4250.993
S06Seawater0.58.343×10-71.6730.992
Table 2  Trantina-Johnson model fitting curve equation
Fig.5  Measured and predicted da/dN under R=0.1 (a), 0.3 (b) and 0.5 (c) in seawater
1 Liu W, Wang J. Environmental impact of material corrosion research progress in marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 504
刘薇, 王佳. 海洋浪溅区环境对材料腐蚀行为影响的研究进展 [J]. 中国腐蚀与防护学报, 2010, 30: 504
2 Li Z Y, Wang G, Luo S W, et al. Early corrosion behavior of EH36 ship plate steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 463
李子运, 王贵, 罗思维等. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 463
3 Matlock D K, Edwards G R, Olson D L, et al. Effect of sea water on the fatigue crack propagation characteristics of welds for offshore structures [J]. J. Mater. Eng., 1987, 9: 25
4 Adedipe O, Brennan F, Kolios A. A relative crack opening time correlation for corrosion fatigue crack growth in offshore structures [J]. Fatigue Fract. Eng. Mater. Struct., 2016, 39: 395
5 Li X Y, Fu Y, Xiong J J. Research about corrosion fatigue behavior of 2B25 aluminum alloy [J]. Chin. Meas. Test, 2015, 41(4): 32
李新宇, 付裕, 熊峻江. 2B25铝合金材料腐蚀疲劳性能试验研究 [J]. 中国测试, 2015, 41(4): 32
6 Meng X Q, Lin Z Y, Wang F F. Investigation on corrosion fatigue crack growth rate in 7075 aluminum alloy [J]. Mater. Des., 2013, 51: 683
7 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, StandardizationAdministration. Metallic materials-fatigue testing-fatigue crack growth method [S]. Beijing: China Standard Press, 2017
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料 疲劳试验 疲劳裂纹扩展方法 [S]. 北京: 中国标准出版社, 2017
8 Trantina G G, Johnson C A. Probabilistic defect size analysis using fatigue and cyclic crack growth rate data [A]. Probabilistic Fracture Mechanics and Fatigue Methods: Applications for Structural Design and Maintenance [C]. West Conshohocken, PA, 1983: 67
9 Walker E K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum [A]. Effects of Environment and Complex Load History on Fatigue Life [C]. West Conshohocken, PA, 1970: 1
10 Zhao J P, Zhou C Y, Yu X C, et al. Effect of stress ratio and Loading frequency on crack growth rate of corrosion fatigue [J]. Press. Ves. Technol., 1999, (6): 1
赵建平, 周昌玉, 於孝春等. 加载频率f和应力比R对腐蚀疲劳裂纹扩展速率影响的研究 [J]. 压力容器, 1999, (6): 1
11 Forman R G. Study of fatigue crack initiation from flaws using fracture mechanics theory [J]. Eng. Fract. Mech., 1972, 4(2): 333
12 Wang R. A fracture model of corrosion fatigue crack propagation of aluminum alloys based on the material elements fracture ahead of a crack tip [J]. Int. J. Fatigue, 2008, 30: 1376
13 Wang C Q, Xiong J J, Shenoi R A, et al. A modified model to depict corrosion fatigue crack growth behavior for evaluating residual lives of aluminum alloys [J]. Int. J. Fatigue, 2016, 83: 280
14 Wang K Q, Xu R P, Lin J H. Fatigue crack growth probability model based on stress ratio [J]. J. Aerosp. Power, 2009, 24: 2012
王坤茜, 徐人平, 林捷晖. 考虑应力比的疲劳裂纹扩展概率模型 [J]. 航空动力学报, 2009, 24: 2012
15 Han E-H, Han Y M, Zheng Y L, et al. Effects of stress ratio and frequency on corrosion fatigue crack [J]. Acta Metall. Sin., 1993, 29: 31
韩恩厚, 韩玉梅, 郑宇礼等. 应力比和频率对低合金钢腐蚀疲劳裂纹扩展机理的影响 [J]. 金属学报, 1993, 29: 31
16 Jones B F. The influence of environment and stress ratio on the low frequency fatigue crack growth behaviour of two medium-strength quenched and tempered steels [J]. Int. J. Fatigue, 1984, 6: 75
17 Elbert W. The significance of fatigue crack closure [A]. Damage Tolerance in Aircraft Structures [C]. West Conshohocken, PA, 1971: 230
18 Li S M, Wu L F, Liu J H, et al. Effect of load ratio and corrosion on fatigue behavior of AerMet100 ultrahigh strength steel [J]. J. Aeronaut. Mater., 2014, 34(3): 74
李松梅, 吴凌飞, 刘建华等. 应力比和腐蚀环境对超高强度钢AerMet100疲劳裂纹扩展的影响 [J]. 航空材料学报, 2014, 34(3): 74
[1] LIU Jun, GENG Yongjuan, LI Shaochun, XU Ailing, HOU Dongshuai, LIU Ang, LANG Xiulu, CHEN Xu, LIU Guofeng. Protection Efficacy of TEOS/IBTS Coating on Microbial Fouling of Concrete in Marine Tidal Areas[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[2] WANG Jing, WANG Siyan, ZHANG Chong, WANG Wentao, CAO Xing, FAN Ning, XU Hongyan. Effect of Nitrogen Doping on Corrosion Inhibition Performance of Carbon Nanoparticles[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
[3] WANG Zhongqi, XU Chunxiang, YANG Lijing, TIAN Linhai, HUANG Tao, SHI Yixuan, YANG Wenfu. Microstructure and Corrosion Resistance of Medical Degradable Mg-2Y-1Zn-xZr Alloy[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[4] LIU Shuhui, LIU Bin, XU Dawei, LIU Yu, CHEN Fanwei, LIU Siqi. Research Progress on Anti-corrosion Coatings of Layered Double Hydroxides[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[5] DENG Jiali, YAN Maocheng, GAO Bowen, ZHANG Hui. Corrosion Behavior of Pipeline Steel Under High-speed Railway Dynamic AC Interference[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.
[6] WANG Yongxiang, HE Bolin, LI Li. Improvement of Corrosion Fatigue Performance of P355NL1 Steel Welded Joint by Ultrasonic Impact[J]. 中国腐蚀与防护学报, 2022, 42(1): 120-126.
[7] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[8] ZHANG Chengdong, LIU Bin, SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[9] YIN Yangyang, LIU Jianfeng, MIAO Keji, WANG Ting, NING Kai, PAN Weiguo, YUAN Binxia, YIN Shibin. Effect of SO42- on Corrosion of Stainless Steel in Solutions Containing Cl-[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[10] ZHANG Jian, HUANG Jin, XU Jiapeng, LUO Guoqiang, SHEN Qiang. Corrosion Behavior of Molybdenum in LiF-LiCl-LiBr-Li Molten Salt at 500 ℃[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[11] YIN Xubao, LI Yuqiao, GAO Rongjie. Preparation of Superhydrophobic Surface on Copper Substrate and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[12] ZHANG Ziyu, WU Xinqiang, HAN En-Hou, KE Wei. A Review on Corrosion Fatigue Crack Growth Behavior of Structural Materials in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[13] CHENG Qidong, WANG Yanhua. Effect of Surface Scratches on Corrosion Behavior of 304 Stainless Steel Beneath Droplets of Solution (0.5 mol/L NaCl+0.25 mol/L MgCl2)[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.
[14] ZHANG Wenli, ZHANG Zhenlong, WU Zhaoliang, HAN Sike, CUI Zhongyu. Effect of Temperature on Pitting Corrosion Behavior of 316L Stainless Steel in Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[15] HU Huihui, CHEN Changfeng. Mechanism of Temperature Influence on Adsorption of Schiff Base[J]. 中国腐蚀与防护学报, 2021, 41(6): 786-794.
No Suggested Reading articles found!