Please wait a minute...
J Chin Soc Corr Pro  2007, Vol. 27 Issue (1): 48-53     DOI:
Research Report Current Issue | Archive | Adv Search |
Investigation of Sulfate-Reducing Bacteria on Pitting of 316L Stainless Steel in Cooling Water System for oil refinery
;
西安交通大学
Download:  PDF(1572KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Microbiological induced pitting corrosion on 316L stainless steel used in water cooling system for oil refinery was analyzed,the electrochemical features on pitting of stainless steel in sulphate-reducing bacteria (SRB)media were investigated by using of open circuit potential measure、potentiodynamic scanning、electrochemical impedance spectrum (EIS)and scanning electron microscopy(SEM).With prolonging the immersion time,the corrosion potentia l and pitting potential decreased,and polarization resistance (Rp)decreased as well.The corrosion rate of 316L SS in SRB medium is larger than those in sterile medium.The experimental results showed that the metabolic activity of SRB influenced the corrosion process,increased the corrosion damage degree of the passive film,accelerated the corrosion rate of 316L SS with the increase of immersion time.
Key words:  Sulphate-Reducing Bacteria ( SRB)      316L stainless steel      pitting corrosion      electrochemical features      
Received:  29 August 2005     
ZTFLH:  TG172.7  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

;. Investigation of Sulfate-Reducing Bacteria on Pitting of 316L Stainless Steel in Cooling Water System for oil refinery. J Chin Soc Corr Pro, 2007, 27(1): 48-53 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2007/V27/I1/48

[1]Federal Highway Administration.Corrosion Cost and PreventiveStrategies in the United States[M].New York:Plenum Press,2002
[2]Adibi N.Environmentally acceptable methods control pipeline corro-sion at lower cost[J].Material Performance,1997,36(2):71-75
[3]Remy M,Bernard C,Michel W.Effect of ferrous ion availability ongrowth of a corroding SRB[J].International Biodeterioration&Bio-degradation,2001,47(3):125-131
[4]Warren P I.Research on the mechanisms of anaerobic corrosion[J].International Biodeterioration&Biodegradation,2001,47(2):63-70
[5]Hakkarainen T J.Microbiologically influenced corrosion of stainlesssteels-What is required for pitting[J].Mater.Corros.,2003,54(4):503-509
[6]Rao TS,Sariram TN,Viswanathan B.Carbon steel corrosion by ironoxidizing and sulphate reducing bacteria in a fresh water cooling sys-tem[J].Corros.Sci.,2000,42(8):1417-1431
[7]Xu C M,Zhang Y H,Cheng G X.Research status and developmenttrends of corrosion in heat exchangers on oil refineries abroad[J].Petro-Chemical Equipment,2005,34(1):41-46(胥聪敏,张耀亨,程光旭.国外炼油厂换热设备腐蚀研究现状及发展动态[J].石油化工设备,2005,34(1):41-46)
[8]Dexter S C,Duquette D J,Siebert O W,et al.Effect of natural marinebiofilms on galvanic corrosion[J].Corrosion,1991,47(4):308-316
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[7] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[8] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[9] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[10] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[11] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[12] Yong ZHOU, Yu ZUO, Fu-an YAN. Effect and Mechanism of Inhibitors on Pitting Corrosion of Metals[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
[13] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[14] Weihang ZHAO, Haowei WANG, Guangyi CAI, Zehua DONG. Localized Corrosion and Corrosion Inhibitor of Al-alloy AA6061 Beneath Electrolyte Layers[J]. 中国腐蚀与防护学报, 2017, 37(4): 366-374.
[15] Yun DAI,Shengdan LIU,Yunlai DENG,Xinming ZHANG. Pitting Corrosion of 7020 Aluminum Alloy in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
No Suggested Reading articles found!