Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (5): 633-638    DOI: 10.11902/1005.4537.2020.236
Current Issue | Archive | Adv Search |
Influence of Magnetic Field on Corrosion Behavior of Al-Mg Alloys with Different Mg Content
YANG Guangheng, ZHOU Zehua(), ZHANG Xin(), WU Lintao, MEI Wan
College of Mechanics and Materials, Hohai University, Nanjing 211100, China
Download:  HTML  PDF(9838KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of magnetic field on the corrosion behavior of Al-Mg alloys with different Mg content in 3.5%NaCl solutions was characterized by electrochemical workstation, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The NaCl solution was magnetized in desired magnetic fields in order to reveal the effect of magnetic field on the properties of the solution and the corrosion performance of Al-Mg alloys. The difference between the effect of magnetic field on charged particles and solution properties during the corrosion process of Al-Mg alloys was also investigated. It was found that the pH and conductivity of the solution increased by the action of magnetic field, which led to the increase of corrosion rate of the alloys, meanwhile, paramagnetic particles are gathered on the alloy surface to inhibit the further development of corrosion of Al-Mg alloys. Therefore, the compition of the above two processes resulted in the decrease of corrosion rate of the alloys, which may be ascribed to that the effect of magnetic field on charged particles is greater than that of pH and conductivity of the solution.

Key words:  magnetic field      Al-Mg alloy      corrosion resistance      magnetization treatment     
Received:  16 November 2020     
ZTFLH:  TG146.21  
Fund: National Natural Science Foundation of China(51909071);Fundamental Research Funds for the Central Universities(B200202133);Natural Science Foundation of Jiangsu Province(BK20190493)
Corresponding Authors:  ZHOU Zehua,ZHANG Xin     E-mail:  zhouzehua@hhu.edu.cn;zhangxin.007@163.com
About author:  ZHANG Xin, E-mail: zhangxin.007@163.com
ZHOU Zehua, E-mail: zhouzehua@hhu.edu.cn

Cite this article: 

YANG Guangheng, ZHOU Zehua, ZHANG Xin, WU Lintao, MEI Wan. Influence of Magnetic Field on Corrosion Behavior of Al-Mg Alloys with Different Mg Content. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 633-638.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.236     OR     https://www.jcscp.org/EN/Y2021/V41/I5/633

Fig.1  Magnetic field processing device
Fig.2  Surface micromorphologies of Al-xMg alloys (x=0 (a), 1.5 (b), 3.0 (c), 5.0 (d), 8.0% (e)) after 48 h immersion in 3.5%NaCl solution under the conditions of 0 (a1~e1) and 0.4 T (a2~e2)
Fig.3  SEM image (a) EDS analysis result (b) of Al-3.0Mg alloy after corrosion in 3.5%NaCl solution without magnetic field for 48 h
Fig.4  Potentiodynamic polarization curves of Al (a) and Al-1.5Mg (b), Al-3.0Mg (c), Al-5.0Mg (d) and Al-8.0Mg (e) alloys in 3.5%NaCl solution under the magnetic field intensities of 0 and 0.4 T
MgEcorr / V

Ecorr

V

Icorr / μA·cm-2IcorrμA·cm-2Epit / V

Epit

V

0 T0.4 T0 T0.4 T0 T0.4 T
0%-1.215-0.9880.2278.5632.139-6.424-0.721-0.743-0.022
1.5%-1.125-1.1160.0094.5892.875-1.714-0.776-0.7500.026
3.0%-1.214-1.1670.04712.058.510-3.54-0.772-0.7610.011
5.0%-1.296-1.2430.05314.5111.50-3.01-0.794-0.7860.008
8.0%-1.314-1.2600.05428.3821.62-6.76-0.842-0.8210.021
Table 1  Ecorr, Icorr, Epit values derived from the polarization curves for Al-Mg alloys
Fig.5  Variations of pH and conductivity of 3.5%NaCl solution during and after the magnetic field treatment at 0.4 T
Fig.6  Potentiodynamic polarization curves (a, c), Nyquist diagrams (b, d) and impedance module of Al-3.0%Mg alloy in untreated and treated solutions at the magnetic field intensity of 0 T (a, b) and 0.4 T (c, d)
SolutionEcorr / VIcorr / μA·cm-2Rs / Ω·cm2C / F·cm2Rt / Ω·cm2
Untreated-1.21412.057.5931.087×10-53.444×104
Treated-1.22612.617.2311.307×10-52.798×104
Table 2  Ecorr, Icorr values and fitting equivalent elements parameters of Al-3.0%Mg alloy in untreated and treated solutions under the condition of magnetic field free
SolutionEcorr / VIcorr / μA·cm-2Rs / Ω·cm2C / F·cm2Rt / Ω·cm2
Untreated-1.1648.518.7454.665×10-63.234×104
Treated-1.20312.795.8411.251×10-52.041×104
Table 3  Ecorr, Icorr values and fitting equivalent elements parameters of Al-3.0%Mg alloy in untreated and treated NaCl solutions at the magnetic field intensity of 0.4 T
1 Liu L, Zhang D. Research progress in electromagnetic shielding materials [J]. J. Funct. Mater., 2015, 46: 3016
刘琳, 张东. 电磁屏蔽材料的研究进展 [J]. 功能材料, 2015, 46: 3016
2 Mei N, Wang X Y, Wang X, et al. Research on shielding effectiveness calculation method of electromagnetic shielding materials [J]. Solid State Phenom., 2020, 304: 137
3 Wu Z G, Song M, He Y H. Effects of Er on the microstructure and mechanical properties of an as-extruded Al-Mg alloy [J]. Mater. Sci. Eng., 2009, 504A: 183
4 Liang Z G, Yang M Y. Radiated electromagnetic interference of electronic equipment [J]. Appl. Mech. Mater., 2013, 336-338: 1469
5 Wang J G, He F, Di H. Correlation analysis of magnetic field and conductivity, pH value in electromagnetic restraint of scale formation [J]. CIESC J., 2012, 63: 1468
王建国, 何芳, 邸昊. 电磁抑垢实验中磁场作用与电导率及pH值的关联分析 [J]. 化工学报, 2012, 63: 1468
6 Botello-Zubiate M E, Alvarez A, Martı́nez-Villafañe A, et al. Influence of magnetic water treatment on the calcium carbonate phase formation and the electrochemical corrosion behavior of carbon steel [J]. J. Alloy. Compd., 2003, 369: 256
7 Jiang C. Research on magnesium alloy for ships in simulated seawater by magnetic field [J]. Intern. Combust. Engine Parts, 2020, (2): 107
姜超. 磁场对船用镁合金在模拟海水中的研究 [J]. 内燃机与配件, 2020, (2): 107
8 Li L, Wang W J, Wang C, et al. Effects of an applied magnetic field on the anodic dissolution of nickel in HNO3+Cl- solution [J]. Electrochem. Commun., 2009, 1: 2109
9 Hinds G, Coey J M D, Lyons M E G. Influence of magnetic forces on electrochemical mass transport [J]. Electrochem. Commun., 2001, 3: 215
10 Xu H Y, Li Y B. Activation behavior of aluminum sacrificial anodes in sea water [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 186
徐宏妍, 李延斌. 铝基牺牲阳极在海水中的活化行为 [J]. 中国腐蚀与防护学报, 2008, 28: 186
11 Song F, Ge H H, Fan X F, et al. Effect of magnetized water on corrosion resistance of metals [J]. Corros. Prot., 2015, 36: 362
宋飞, 葛红花, 范秀方等. 磁化水对金属耐蚀性能的影响 [J]. 腐蚀与防护, 2015, 36: 362
12 Wang Z D, Wang K. The properties of magnetic conditioned water [J]. J. Inner Mongolia Univ. Sci. Technol., 2016, 35: 284
王正德, 王逵. 磁调控对水的性能影响 [J]. 内蒙古科技大学学报, 2016, 35: 284
13 Pang X F, Deng B. Investigation of changes in properties of water under the action of a magnetic field [J]. Sci China Ser. G: Phys., Mech. Astron., 2008, 51: 1621
14 Liu J X, Li J X, Xiao C F. Application of magnetized water treatment in anti-scaling and membrane separation [J]. Technol. Water Treat., 2007, 33(1): 4
刘景霞, 李建新, 肖长发. 磁化水处理在防垢和膜分离中的应用 [J]. 水处理技术, 2007, 33(1): 4
15 Shi Y J, Pan Q L, Li M J, et al. Effect of Sc and Zr additions on corrosion behaviour of Al-Zn-Mg-Cu alloys [J]. J. Alloy. Comp., 2014, 612: 42
[1] LANG Fengjun, HUANG Feng, XU Jinqiao, LI Liwei, YUE Jiangbo, LIU Jing. Composition Design and Corrosion Resistance of Mg Microallyed X70 Grade Acid Resistant Submarine Pipeline Steel (X70MOS)[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[2] FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[3] WU Lintao, ZHOU Zehua, ZHANG Xin, YANG Guangheng, ZHANG Kaicheng, WANG Guangyu. Long-term Corrosion Resistance of Plasma Sprayed FeCrMoCBY Fe-based Amorphous Coating in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[4] LIU Hongyu, ZHANG Xiqing, TENG Yingxue, LI Shengli. Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[5] ZHANG Haoran, WU Hongyan, WANG Shanlin, ZUO Yao, CHEN Yuhua, YIN Limeng. Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[6] SHI Jian, HU Xuewen, HE Bo, YANG Zheng, GUO Rui, WANG Fei. Sulfuric Acid Corrosion Resistance of Q345NS Steel Welded Joint[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
[7] WANG Xiaoge, GAO Kewei, YAN Luchun, YANG Huisheng, PANG Xiaolu. Effect of Ce on Corrosion Resistance of Films of ZnAlCe-layered Double Hydroxides on Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[8] WANG Dongliang, DING Huaping, MA Yunfei, GONG Pan, WANG Xinyun. Research Progress on Corrosion Resistance of Metallic Glasses[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[9] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[10] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[11] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[12] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[13] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[14] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[15] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
No Suggested Reading articles found!