|
|
Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance |
FANG Haojie1,2,3, QU Hua2,3, YANG Lihui3,4, ZENG Qingya2, WANG Lidan2, YUAN Ning2, HOU Baorong3,4, CAO Lixin1, YUAN Xundao2( ) |
1.School of Materials Science and Engineering, Ocean University of China, Qingdao 266011, China 2.Qingdao Zhongke Institute of Applied Chemistry, Qingdao 266109, China 3.Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China 4.Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China |
|
|
Abstract The 9C series Al-alloy is a kind of Al-alloy prepared by powder metallurgy technology. In order to provide a reference for the application of 9C series Al-alloy in the marine field, two grades of 9C series Al-alloy, 9C34 (extrusion forming) and 9C37 (molding forming) Al-alloy were compared with 5083 Al-alloy, especially in terms of corrosion performance. The mechanical properties of the three alloys were evaluated by tensile test and hardness test, and the effect of temperature and pH on the corrosion behavior of the alloys in different corrosive environments were comparatively investigated via salt spray tests, polarization curves measurement and electrochemical impedance spectroscopy. The results show that the strength (up to 550 MPa) and hardness (up to 130HB) of 9C Al-alloy are significantly better than that of 5083 Al-alloy. With excellent mechanical properties and high corrosion resistance, 9C series Al-alloy has obviously application prospect as corrosion-resistant structural materials.
|
Received: 19 October 2020
|
|
Fund: Open Studio for Marine Corrosion and Protection Open Research Fund Project(HYFSKF-201803);Guangxi Innovation-driven Development Special Project (Major Science and Technology Special Project)(Guike AA18242035) |
Corresponding Authors:
YUAN Xundao
E-mail: qdjy_yxd@sina.com
|
About author: YUAN Xundao, E-mail: qdjy_yxd@sina.com
|
Cite this article:
FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 775-785.
URL:
https://www.jcscp.org/EN/10.11902/1005.4537.2020.196 OR https://www.jcscp.org/EN/Y2021/V41/I6/775
|
1 |
Duan L Q. Study on the green sealing methods for aluminum alloy anodic oxide film [D]. Beijing: Beijing University of Chemical Technology, 2010
|
|
段立清. 铝合金阳极氧化膜的稀土封闭技术的研究 [D]. 北京: 北京化工大学, 2010
|
2 |
Li Y D, Liu X H, Zhang X L, et al. An review of semi-solid near-net forming in wrought aluminum alloy [J]. Spec. Cast. Nonferr. Alloys, 2014, 34: 471
|
|
李元东, 刘兴海, 张心龙等. 变形铝合金半固态近净成形研究进展 [J]. 特种铸造及有色合金, 2014, 34: 471
|
3 |
Wang B. The Research on compaction mechanism of 6061 [D]. Wuhan: Wuhan University of Technology, 2018
|
|
王斌. 6061铝合金粉末压制机理研究 [D]. 武汉: 武汉理工大学, 2018
|
4 |
Qu H, Tang H G, Yuan X D, et al. A series of high performance aluminium alloys prepared by powder metallurgy [J]. J. Appliance Sci. Technol., 2016, (): 223
|
|
曲华, 汤华国, 袁迅道等. 粉末冶金技术制备的系列高性能铝合金 [J]. 家电科技, 2016, (): 223
|
5 |
Zhang W L. The influence of powder metallurgy process on the properties of preparation process materials [J]. Adhesion, 2019, 40: 41
|
|
张万良. 粉末冶金工艺对制备工艺材料性能的影响 [J]. 粘接, 2019, 40: 41
|
6 |
Wang J T, Guo Y L, Jin T. Corrosion behavior of Q235A-Z35 steel under 3.5%NaCl salt spray condition [J]. Mater. Prot., 2020, 53(4): 89
|
|
王建涛, 郭云龙, 金涛. 3.5%NaCl盐雾条件下Q235A-Z35钢的腐蚀行为研究 [J]. 材料保护, 2020, 53(4): 89
|
7 |
Cao C N. Principles of Electrochemistry of Corrosion [M]. Beijing: Chemical Industry Press, 2008: 99
|
|
曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2008: 99
|
8 |
Chen Y L, Wang Z F, Bian G X, et al. Equivalent conversion of galvanic corrosion of typical aluminum-titanium alloy in NaCl solution with different concentrations [J]. Acta Aeronaut. Astronaut. Sin., 2017, 38: 260
|
|
陈跃良, 王哲夫, 卞贵学等. 不同浓度NaCl溶液下典型铝/钛合金电偶腐蚀当量折算关系 [J]. 航空学报, 2017, 38: 260
|
9 |
Tian J Q. The electrochemical corrosion behavior of tungsten-aluminum (W-Al) alloy in NaCl solution [D]. Qingdao: Ocean University of China, 2013
|
|
田继强. 钨铝合金在NaCI溶液中的电化学腐蚀行为研究 [D]. 青岛: 中国海洋大学, 2013
|
10 |
Shao H B, Zhang J Q, Wang J M, et al. EIS analysis on the anodic dissolution process of pure aluminum in an alkaline solution [J]. Acta Phys. Chim. Sin., 2003, 19: 372
|
|
邵海波, 张鉴清, 王建明等. 纯铝在强碱溶液中阳极溶解的电化学阻抗谱解析 [J]. 物理化学学报, 2003, 19: 372
|
11 |
Real S, Urquidi-MaCdonald M, MaCdonald D D. Evaluation of alloy anodes for aluminum-air batteries [J]. Cheminform, 1988, 20: 2410
|
12 |
Wang J B. Corrosion and electrochemical behavior of aluminum in alkaline media [D]. Hangzhou: Zhejiang University, 2008
|
|
王俊波. 铝在碱性介质中的腐蚀与电化学行为 [D]. 杭州: 浙江大学, 2008
|
13 |
Liu Y Q, Li G M, Chen S, et al. Influences of copper ions and potential on cathodic protection behaviors of aluminum alloy 5083 [J]. Mater. Prot., 2017, 50(5): 88
|
|
刘亚强, 李国明, 陈珊等. 铜离子及电位对5083铝合金阴极保护行为的影响 [J]. 材料保护, 2017, 50(5): 88
|
14 |
Harrington S P, Devine T M. Relation between the semiconducting properties of a passive film and reduction reaction rates [J]. J. Electrochem. Soc., 2009, 156(4): C154
|
15 |
Song W H. The study on the dependence of corrosion process of magnesium anodic films on pH [D]. Chongqing: Chongqing University, 2012
|
|
宋卫华. 镁合金阳极氧化膜的腐蚀过程随pH变化的研究 [D]. 重庆: 重庆大学, 2012
|
16 |
Zhao X H. Study of electrochemical impedance spectroscopy on anodized aluminum alloys [D]. Beijing: Beijing University of Chemical Technology, 2016
|
|
赵旭辉. 铝阳极氧化膜的电化学阻抗特征研究 [D]. 北京: 北京化工大学, 2016
|
17 |
Lv Y L. Steam turbine rotor thermal embrittlement detection method based-on electrochemical impedance spectroscopy [D]. Beijing: North China Electric Power University (Beijing), 2016
|
|
吕亚玲. 基于电化学阻抗谱的汽轮机转子钢热脆化检测方法研究 [D]. 北京: 华北电力大学 (北京), 2016
|
18 |
Hu B. The corrosion inhibition of rare passivation and the corrosion behavior of 7075 aluminum alloy in alkaline solution with NaCl [D]. Xining: Qinghai Normal University, 2014
|
|
胡博. 7075型铝合金在碱性NaCl介质中的腐蚀行为及稀土钝化缓蚀作用 [D]. 西宁: 青海师范大学, 2014
|
19 |
Hu B, Wang J C, Liu Y, et al. The corrosion behavior of 7075 al alloy in alkaline NaCl [J]. Mater. Prot., 2014, 47(3): 23
|
|
胡博, 王建朝, 刘影等. 7075型铝合金在含NaOH碱性NaCl溶液中的腐蚀行为 [J]. 材料保护, 2014, 47(3): 23
|
20 |
Sheng H, Dong C F, Xiao K, et al. Effect of pH on electrochemical behavior of 2024-T351 aluminium Alloy in NaCl solution [J]. Corros. Prot., 2013, 34: 107
|
|
生海, 董超芳, 肖葵等. pH值对2024-T351铝合金在NaCl溶液中电化学行为的影响 [J]. 腐蚀与防护, 2013, 34: 107
|
21 |
Chen Y L, Wang A D, Bian G X, et al. Study on electrochemical behavior of 2024-T3 aluminum alloy in different acidic aqueous solutions [J]. Failure Anal. Prev., 2017, 12: 78
|
|
陈跃良, 王安东, 卞贵学等. 2024-T3铝合金在不同酸性水溶液中的电化学行为 [J]. 失效分析与预防, 2017, 12: 78
|
22 |
Moon S M, Pyun S I. Faradaic reactions and their effects on dissolution of the natural oxide film on pure aluminum during cathodic polarization in aqueous solutions [J]. Corrosion, 1998, 54: 546
|
23 |
Cao C N, Wang J, Lin H C. Effect of Cl- ion on the impedance of passive-film-covered electrodes [J]. J. Chin. Soc. Corros. Prot., 1989, 9: 261
|
|
曹楚南, 王佳, 林海潮. 氯离子对钝态金属电极阻抗频谱的影响 [J]. 中国腐蚀与防护学报, 1989, 9: 261
|
24 |
Ma J L, Wen J B, Lu X W, et al. Electrochemical impedance spectroscopy of aluminum alloy anode during corrosion process [J]. Corros. Prot., 2009, 30: 373
|
|
马景灵, 文九巴, 卢现稳等. 铝合金阳极腐蚀过程的电化学阻抗谱研究 [J]. 腐蚀与防护, 2009, 30: 373
|
25 |
An B G, Zhang X Y, Song S Z, et al. A study of electrochemical impedance spectrum for corrosion behavior of LY12 aluminum alloy in simulated acid rain [J]. J. Chin. Soc. Corros. Prot., 2003, 23(3): 167
|
|
安百刚, 张学元, 宋诗哲等. LY12铝合金在模拟酸雨溶液中的阻抗谱研究 [J]. 中国腐蚀与防护学报, 2003, 23(3): 167
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|