Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (6): 775-785    DOI: 10.11902/1005.4537.2020.196
Current Issue | Archive | Adv Search |
Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance
FANG Haojie1,2,3, QU Hua2,3, YANG Lihui3,4, ZENG Qingya2, WANG Lidan2, YUAN Ning2, HOU Baorong3,4, CAO Lixin1, YUAN Xundao2()
1.School of Materials Science and Engineering, Ocean University of China, Qingdao 266011, China
2.Qingdao Zhongke Institute of Applied Chemistry, Qingdao 266109, China
3.Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
4.Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Download:  HTML  PDF(3242KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The 9C series Al-alloy is a kind of Al-alloy prepared by powder metallurgy technology. In order to provide a reference for the application of 9C series Al-alloy in the marine field, two grades of 9C series Al-alloy, 9C34 (extrusion forming) and 9C37 (molding forming) Al-alloy were compared with 5083 Al-alloy, especially in terms of corrosion performance. The mechanical properties of the three alloys were evaluated by tensile test and hardness test, and the effect of temperature and pH on the corrosion behavior of the alloys in different corrosive environments were comparatively investigated via salt spray tests, polarization curves measurement and electrochemical impedance spectroscopy. The results show that the strength (up to 550 MPa) and hardness (up to 130HB) of 9C Al-alloy are significantly better than that of 5083 Al-alloy. With excellent mechanical properties and high corrosion resistance, 9C series Al-alloy has obviously application prospect as corrosion-resistant structural materials.

Key words:  Al-alloy      powder metallurgy      corrosion resistance      corrosion behavior      mechanical property     
Received:  19 October 2020     
ZTFLH:  TG17  
Fund: Open Studio for Marine Corrosion and Protection Open Research Fund Project(HYFSKF-201803);Guangxi Innovation-driven Development Special Project (Major Science and Technology Special Project)(Guike AA18242035)
Corresponding Authors:  YUAN Xundao     E-mail:  qdjy_yxd@sina.com
About author:  YUAN Xundao, E-mail: qdjy_yxd@sina.com

Cite this article: 

FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 775-785.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.196     OR     https://www.jcscp.org/EN/Y2021/V41/I6/775

Fig.1  Stress-strain curves of three test Al-alloys
Al-alloyTensile strength / MPaYield strength / MPaYield ratioElongation / %Hardness (HB)
9C345055000.994.80115
9C375605601.004.54130
50833152350.756.6970
Table 1  Mechanical properties of three test Al-alloys
Fig.2  Macro morphologies of 9C34 (a1~a5), 9C37 (b1~b5) and 5083 (c1~c5) Al-alloys after salt spray corrosion for 0 h (a1~c1), 72 h (a2~c2), 144 h (a3~c3), 216 h (a4~c4) and 288 h (a5~c5)
Al-alloyCorrosion time / hTest 1Test 2Test 3Test 4Average
9C34720.02850.02860.02570.02680.0274
1440.01310.01310.01520.01470.0140
2160.01420.01240.01470.01820.0149
2880.01560.01610.01110.01340.0141
9C37720.01490.02880.03160.03690.0281
1440.02150.02120.01790.02020.0202
2160.01060.01110.01380.01510.0127
2880.01090.01020.01370.01290.0119
5083720.04860.05000.04380.04960.0481
1440.02920.02400.02620.02500.0261
2160.01950.01610.01510.01550.0165
2880.01900.01610.01670.01610.0170
Table 2  Average corrosion rate of three Al-alloys in the different periods of salt spray test (g·m-2·h)
Fig.3  Polarization curves of three Al-alloys in simulated seawater with the pH8.3 at 25 ℃
Al-alloyEcorr / Vβa / V·dec-1βc / V·dec-1Icorr / A·cm-2
9C34-1.2060.1450.2173.16×10-6
9C37-1.1620.1400.3371.33×10-6
5083-1.1640.1940.3361.25×10-6
Table 3  Fitting results of polarization curves
Fig.4  Nyquist plots and equivalent circuit of three Al-alloys in simulated seawater with pH8.3 at 25 ℃[10]
Al-alloyRs / Ω·cm2R1 / Ω·cm2C1 / F·cm-2n1
9C343.37886899.012×10-60.9375
9C372.7871.478×1046.406×10-60.9624
50833.7511.792×1045.601×10-60.9647
Table 4  Fitting parameters of EIS of three Al-alloys in simulated seawater with pH8.3 at 25 ℃
Fig.5  Polarization curves of 9C34 (a), 9C37 (b) and 5083 (c) Al-alloys in simulated seawater with pH8.3 at different temperatures
Al-alloyT / ℃Ecorr / VCathodic tafel slope / V·dec-1Anodic tafel slope / V·dec-1Icorr / A·cm-2
9C3415-0.8360.1760.3068.92×10-7
25-1.2060.1450.2173.16×10-6
35-1.2900.0920.5496.57×10-5
9C3715-0.8400.0960.3717.79×10-7
25-1.1620.1400.3371.33×10-6
35-1.2330.1030.6453.73×10-5
508315-0.8790.1550.2023.91×10-7
25-1.1640.1940.3361.25×10-6
35-1.1700.1090.3225.96×10-5
Table 5  Fitting results of polarization curves of Al-alloys in simulated seawater with pH8.3 at different temperatures
Fig.6  Nyquist plots of 9C34 (a), 9C37 (b) and 5083 (c) Al-alloy in simulated seawater with pH8.3 at different temperatures
Al-alloyT / ℃Rs / Ω·cm2R1 / Ω·cm2C1 / F·cm-2n1
9C34154.37484859.051×10-60.9306
253.37886899.012×10-60.9375
351.80810271.297×10-50.8597
9C37154.05285778.955×10-60.9312
252.787147806.406×10-60.9624
351.34953618.826×10-60.9166
5083154.882109707.224×10-60.9472
253.751179205.601×10-60.9647
352.28319191.305×10-50.9022
Table 6  Fitting results of EIS of three Al-alloys in simulated seawater with pH8.3 at different temperatures
Fig.7  Polarization curves of 9C34 (a), 9C37 (b) and 5083 (c) Al-alloy in simulated seawater with different pH values at 25 ℃
Al-alloypHEcorr / VCathodic tafel slope / V·dec-1Anodic tafel slope / V·dec-1Icorr / A·cm-2
9C345.0-0.6350.4530.1022.73×10-6
7.0-0.6280.3690.1824.53×10-7
8.3-1.2060.1450.2173.16×10-6
9C375.0-0.6410.2590.0562.17×10-6
7.0-0.6370.2520.0203.46×10-8
8.3-1.1620.1400.3371.33×10-6
50835.0-0.6950.2170.0191.29×10-6
7.0-0.6300.2370.0967.54×10-7
8.3-1.1640.1940.3361.25×10-6
Table 7  Fitting results of polarization curves of three Al-alloys in simulated seawater with different pH values at 25 ℃
Fig.8  Nyquist plots of 9C34 (a), 9C37 (b) and 5083 (c) Al-alloys in simulated seawater with different pH values at 25 ℃
Fig.9  Equivalent circuits used to fit EIS for different Al-alloys in simulated seawater with different pH values: (a) for three Al-alloys, pH8.3; (b) for 9C37 and 5083 Al-alloys, pH5.0 and 7.0; for 9C34 Al-alloy, pH7.0; (c) for 9C34 Al-alloy, pH5.0[25]
Al-alloypHRs / Ω·cm2R1 / Ω·cm2C1 / F·cm-2n1Lo / H·cm2W / Ω-1·cm2
9C345.02.52151201.229×10-50.8186---0.392×10-3
7.03.492334705.567×10-60.95357.575×107---
8.33.3786899.012×10-60.9375------
9C375.01.24171208.381×10-60.86924.503×105---
7.03.583147505.362×10-60.96511.043×107---
8.32.79147806.406×10-60.9624------
50835.02.21185406.528×10-60.90454.316×105---
7.03.792157606.141×10-60.93958.596×107---
8.33.75179205.601×10-60.9647------
Table 8  Fitting results of EIS of three Al-alloys in simulated seawater with different pH values at 25 ℃
1 Duan L Q. Study on the green sealing methods for aluminum alloy anodic oxide film [D]. Beijing: Beijing University of Chemical Technology, 2010
段立清. 铝合金阳极氧化膜的稀土封闭技术的研究 [D]. 北京: 北京化工大学, 2010
2 Li Y D, Liu X H, Zhang X L, et al. An review of semi-solid near-net forming in wrought aluminum alloy [J]. Spec. Cast. Nonferr. Alloys, 2014, 34: 471
李元东, 刘兴海, 张心龙等. 变形铝合金半固态近净成形研究进展 [J]. 特种铸造及有色合金, 2014, 34: 471
3 Wang B. The Research on compaction mechanism of 6061 [D]. Wuhan: Wuhan University of Technology, 2018
王斌. 6061铝合金粉末压制机理研究 [D]. 武汉: 武汉理工大学, 2018
4 Qu H, Tang H G, Yuan X D, et al. A series of high performance aluminium alloys prepared by powder metallurgy [J]. J. Appliance Sci. Technol., 2016, (): 223
曲华, 汤华国, 袁迅道等. 粉末冶金技术制备的系列高性能铝合金 [J]. 家电科技, 2016, (): 223
5 Zhang W L. The influence of powder metallurgy process on the properties of preparation process materials [J]. Adhesion, 2019, 40: 41
张万良. 粉末冶金工艺对制备工艺材料性能的影响 [J]. 粘接, 2019, 40: 41
6 Wang J T, Guo Y L, Jin T. Corrosion behavior of Q235A-Z35 steel under 3.5%NaCl salt spray condition [J]. Mater. Prot., 2020, 53(4): 89
王建涛, 郭云龙, 金涛. 3.5%NaCl盐雾条件下Q235A-Z35钢的腐蚀行为研究 [J]. 材料保护, 2020, 53(4): 89
7 Cao C N. Principles of Electrochemistry of Corrosion [M]. Beijing: Chemical Industry Press, 2008: 99
曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2008: 99
8 Chen Y L, Wang Z F, Bian G X, et al. Equivalent conversion of galvanic corrosion of typical aluminum-titanium alloy in NaCl solution with different concentrations [J]. Acta Aeronaut. Astronaut. Sin., 2017, 38: 260
陈跃良, 王哲夫, 卞贵学等. 不同浓度NaCl溶液下典型铝/钛合金电偶腐蚀当量折算关系 [J]. 航空学报, 2017, 38: 260
9 Tian J Q. The electrochemical corrosion behavior of tungsten-aluminum (W-Al) alloy in NaCl solution [D]. Qingdao: Ocean University of China, 2013
田继强. 钨铝合金在NaCI溶液中的电化学腐蚀行为研究 [D]. 青岛: 中国海洋大学, 2013
10 Shao H B, Zhang J Q, Wang J M, et al. EIS analysis on the anodic dissolution process of pure aluminum in an alkaline solution [J]. Acta Phys. Chim. Sin., 2003, 19: 372
邵海波, 张鉴清, 王建明等. 纯铝在强碱溶液中阳极溶解的电化学阻抗谱解析 [J]. 物理化学学报, 2003, 19: 372
11 Real S, Urquidi-MaCdonald M, MaCdonald D D. Evaluation of alloy anodes for aluminum-air batteries [J]. Cheminform, 1988, 20: 2410
12 Wang J B. Corrosion and electrochemical behavior of aluminum in alkaline media [D]. Hangzhou: Zhejiang University, 2008
王俊波. 铝在碱性介质中的腐蚀与电化学行为 [D]. 杭州: 浙江大学, 2008
13 Liu Y Q, Li G M, Chen S, et al. Influences of copper ions and potential on cathodic protection behaviors of aluminum alloy 5083 [J]. Mater. Prot., 2017, 50(5): 88
刘亚强, 李国明, 陈珊等. 铜离子及电位对5083铝合金阴极保护行为的影响 [J]. 材料保护, 2017, 50(5): 88
14 Harrington S P, Devine T M. Relation between the semiconducting properties of a passive film and reduction reaction rates [J]. J. Electrochem. Soc., 2009, 156(4): C154
15 Song W H. The study on the dependence of corrosion process of magnesium anodic films on pH [D]. Chongqing: Chongqing University, 2012
宋卫华. 镁合金阳极氧化膜的腐蚀过程随pH变化的研究 [D]. 重庆: 重庆大学, 2012
16 Zhao X H. Study of electrochemical impedance spectroscopy on anodized aluminum alloys [D]. Beijing: Beijing University of Chemical Technology, 2016
赵旭辉. 铝阳极氧化膜的电化学阻抗特征研究 [D]. 北京: 北京化工大学, 2016
17 Lv Y L. Steam turbine rotor thermal embrittlement detection method based-on electrochemical impedance spectroscopy [D]. Beijing: North China Electric Power University (Beijing), 2016
吕亚玲. 基于电化学阻抗谱的汽轮机转子钢热脆化检测方法研究 [D]. 北京: 华北电力大学 (北京), 2016
18 Hu B. The corrosion inhibition of rare passivation and the corrosion behavior of 7075 aluminum alloy in alkaline solution with NaCl [D]. Xining: Qinghai Normal University, 2014
胡博. 7075型铝合金在碱性NaCl介质中的腐蚀行为及稀土钝化缓蚀作用 [D]. 西宁: 青海师范大学, 2014
19 Hu B, Wang J C, Liu Y, et al. The corrosion behavior of 7075 al alloy in alkaline NaCl [J]. Mater. Prot., 2014, 47(3): 23
胡博, 王建朝, 刘影等. 7075型铝合金在含NaOH碱性NaCl溶液中的腐蚀行为 [J]. 材料保护, 2014, 47(3): 23
20 Sheng H, Dong C F, Xiao K, et al. Effect of pH on electrochemical behavior of 2024-T351 aluminium Alloy in NaCl solution [J]. Corros. Prot., 2013, 34: 107
生海, 董超芳, 肖葵等. pH值对2024-T351铝合金在NaCl溶液中电化学行为的影响 [J]. 腐蚀与防护, 2013, 34: 107
21 Chen Y L, Wang A D, Bian G X, et al. Study on electrochemical behavior of 2024-T3 aluminum alloy in different acidic aqueous solutions [J]. Failure Anal. Prev., 2017, 12: 78
陈跃良, 王安东, 卞贵学等. 2024-T3铝合金在不同酸性水溶液中的电化学行为 [J]. 失效分析与预防, 2017, 12: 78
22 Moon S M, Pyun S I. Faradaic reactions and their effects on dissolution of the natural oxide film on pure aluminum during cathodic polarization in aqueous solutions [J]. Corrosion, 1998, 54: 546
23 Cao C N, Wang J, Lin H C. Effect of Cl- ion on the impedance of passive-film-covered electrodes [J]. J. Chin. Soc. Corros. Prot., 1989, 9: 261
曹楚南, 王佳, 林海潮. 氯离子对钝态金属电极阻抗频谱的影响 [J]. 中国腐蚀与防护学报, 1989, 9: 261
24 Ma J L, Wen J B, Lu X W, et al. Electrochemical impedance spectroscopy of aluminum alloy anode during corrosion process [J]. Corros. Prot., 2009, 30: 373
马景灵, 文九巴, 卢现稳等. 铝合金阳极腐蚀过程的电化学阻抗谱研究 [J]. 腐蚀与防护, 2009, 30: 373
25 An B G, Zhang X Y, Song S Z, et al. A study of electrochemical impedance spectrum for corrosion behavior of LY12 aluminum alloy in simulated acid rain [J]. J. Chin. Soc. Corros. Prot., 2003, 23(3): 167
安百刚, 张学元, 宋诗哲等. LY12铝合金在模拟酸雨溶液中的阻抗谱研究 [J]. 中国腐蚀与防护学报, 2003, 23(3): 167
[1] LIU Quanbing, LIU Zongde, GUO Shengyang, XIAO Yi. Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[2] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[3] ZHOU Dianmai, JIANG Lei, WANG Meiting, LIANG Hongjia, XIAO Yunlong, ZHENG Li, YU Baoyi. Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[4] LIU Xing, RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, LONG Bin. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[5] DING Yukang, CHEN Guomei, NI Zifeng, LIU Yaxuan, QIAN Shanhua, BIAN Da, ZHAO Yongwu. Corrosion Resistance of Silane Film Modified by Hexagonal Boron Nitride[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[6] WU Lintao, ZHOU Zehua, ZHANG Xin, YANG Guangheng, ZHANG Kaicheng, WANG Guangyu. Long-term Corrosion Resistance of Plasma Sprayed FeCrMoCBY Fe-based Amorphous Coating in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[7] LIU Hongyu, ZHANG Xiqing, TENG Yingxue, LI Shengli. Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[8] YANG Guangheng, ZHOU Zehua, ZHANG Xin, WU Lintao, MEI Wan. Influence of Magnetic Field on Corrosion Behavior of Al-Mg Alloys with Different Mg Content[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[9] ZHANG Xin, LIN Muyan, YANG Guangheng, WANG Zehua, SHAO Jia, ZHOU Zehua. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[10] LANG Fengjun, HUANG Feng, XU Jinqiao, LI Liwei, YUE Jiangbo, LIU Jing. Composition Design and Corrosion Resistance of Mg Microallyed X70 Grade Acid Resistant Submarine Pipeline Steel (X70MOS)[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[11] FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[12] ZHANG Haoran, WU Hongyan, WANG Shanlin, ZUO Yao, CHEN Yuhua, YIN Limeng. Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[13] SHI Jian, HU Xuewen, HE Bo, YANG Zheng, GUO Rui, WANG Fei. Sulfuric Acid Corrosion Resistance of Q345NS Steel Welded Joint[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
[14] WANG Dongliang, DING Huaping, MA Yunfei, GONG Pan, WANG Xinyun. Research Progress on Corrosion Resistance of Metallic Glasses[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[15] QIAO Zhongli, WANG Ling, SHI Yanhua, YANG Zongkui. Microstructure and Corrosion Resistance of Welded Joint of 14Cr1MoR Steel[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
No Suggested Reading articles found!