Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (6): 786-794    DOI: 10.11902/1005.4537.2020.156
Current Issue | Archive | Adv Search |
Mechanism of Temperature Influence on Adsorption of Schiff Base
HU Huihui, CHEN Changfeng()
School of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
Download:  HTML  PDF(4705KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Two Schiff base corrosion inhibitors containing phenyl groups, namely BB-S corrosion inhibitor and B-S corrosion inhibitor are synthesized, and then their corrosion inhibition behavior for the corrosion of N80 steel in 0.5% (mass fraction) HCl solution at temperatures within the range of 30~90 ℃ was assessed. The effect of temperature on the adsorption mechanism of Schiff base corrosion inhibitor was also discussed. The results show that the corrosion inhibition efficiency of corrosion inhibitors BB-S and B-S all decreases with the increasing temperature, while the corrosion inhibition efficiency of B-S is always greater than that of BB-S at different temperatures. Results of molecular dynamics and quantum chemistry calculation indicate that the decrease in corrosion inhibition efficiency of the two Schiff base corrosion inhibitors with the increasing temperature may be closely related to the larger steric hindrance of the benzene ring in the Schiff base corrosion inhibitor, molecular thermal movement, molecular adsorption configuration and frontline orbital energy. This study is of great significance for understanding the effect of temperature on the corrosion inhibition mechanism of corrosion inhibitors.

Key words:  Schiff base corrosion      temperature      adsorption      benzene ring      desorption     
Received:  31 August 2020     
ZTFLH:  TB37  
Corresponding Authors:  CHEN Changfeng     E-mail:  chen_c_f@163.com
About author:  CHEN Changfeng, E-mail: chen_c_f@163.com

Cite this article: 

HU Huihui, CHEN Changfeng. Mechanism of Temperature Influence on Adsorption of Schiff Base. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 786-794.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.156     OR     https://www.jcscp.org/EN/Y2021/V41/I6/786

Fig.1  Synthesis of B-S (a) and BB-S (b) corrosion inhibitors
Fig.2  IR spectra of B-S (a) and BB-S (b) inhibitors
Fig.3  Inhibition efficiencies of BB-S and B-S inhibitors in 0.5 mol·L-1 HCl solution at different temperatures
Fig.4  Corrosion morphologies of N80 steel after corrosion in 0.5 mol·L-1 HCl solutions containing BB-S (a1~a4) and B-S (b1~b4) inhibitors at 30 ℃ (a1, b1), 50 ℃ (a2, b2), 70 ℃ (a3, b3) and 90 ℃ (a4, b4)
Fig.5  Polarization curves of N80 steel in 0.5 mol·L-1 HCl solutions containing B-S (a) and BB-S (b) inhibitors at different temperatures
Corrosion inhibitorT / ℃ba / mVbc / mVI / A·cm-2
B-S inhibitor3064.092373.65560.2356
5045.560162.53230.1358
7062.793469.61430.0863
9057.780373.67060.0405
BB-S inhibitor3063.801278.32090.5244
5075.692370.74120.4657
7071.274171.16140.3158
9064.520477.30360.1335
Table 1  Electrochemical polarization parameters of N80 steel at different temperatures in 0.5 mol·L-1 HCl solutions containing B-S and BB-S inhibitors
Fig.6  EIS plots of N80 steel in 0.5 mol·L-1 HCl solutions containing in B-S (a) and BB-S (b) inhibitors at different temperatures
Fig.7  Equivalent circuit diagram of EIS of N80 steel in HCl solutions containing B-S and BB-S inhibitors
Corrosion inhibitorT / ℃RsΩ·cm2Cdl10-5 F·cm-2RctΩ·cm2Cf10-5 F·cm-2RfΩ·cm2
B-S inhibitor302.0518.026749.0414.53921.540
501.6798.071732.0026.61422.951
701.5348.908171.3875.13217.040
901.77311.9885.0565.12212.640
BB-S inhibitor302.6969.542705.3455.35014.160
502.2989.798545.5674.32718.130
702.57610.926168.3455.02722.950
902.24516.75093.0324.98010.930
Table 2  Fitting parameters of EIS of N80 steel in 0.5 mol·L-1 HCl impedance spectrum parameters of B-S corrosion inhibitor at different temperatures
Fig.8  Frontier orbital energy level diagrams of B-S (a) and BB-S (b) inhibitors: (a1, b1) optimized molecular structure of corrosion inhibitor, (a2, b2) HOMO distribution of corrosion inhibitor, (a3, b3) LUMO distribution of corrosion inhibitor
Corrosion inhibitorBB-SB-S
HOMO-5.223-4.974
LUMO-2.310-2.110
ΔE2.9132.864
I5.2234.974
A2.3102.110
η1.45651.432
σ0.68660.698
χ3.76653.542
Table 3  Quantum chemical parameters of B-S and BB-S corrosion inhibitors
Fig.9  Most stable low energy configurations for the adsorp-tion of B-S (a) and BB-S (b) at 30 ℃ (a1, b1), 50 ℃ (a2, b2), 70 ℃ (a2, b3) and 90 ℃ (a4, b4) corrosion inhibitor on Fe(110) surface
T / ℃BB-SB-S
30-1955.26-2012.32
50-1885.73-1943.07
70-1848.86-1942.23
90-1846.54-1930.78
Table 4  Adsorption energies of B-S and BB-S corrosion inhibitors at different temperatures (kJ·mol-1)
Fig.10  Corrosion inhibition mechanism diagram of B-S and BB-S inhibitors
1 Djellab M, Bentrah H, Chala A, et al. Synergistic effect of halide ions and gum Arabic for the corrosion inhibition of API5L X70 pipeline steel in H2SO4 [J]. Mater. Corros., 2019, 70: 149
2 Shihab M S, Mahmood A F. Experimental and theoretical study of some N-pyridinium salt derivatives as corrosion inhibitors for mild-steel in acidic media [J]. Russ. J. Appl. Chem., 2016, 89: 505
3 Bai Y L, Shen G L, Qin Q Y, et al. Effect of thiourea imidazoline quaternary ammonium salt corrosion inhibitor on corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 60
白云龙, 沈国良, 覃清钰等. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 60
4 Kokalj A, Peljhan S, Finšgar M, et al. What determines the inhibition effectiveness of ATA, BTAH, and BTAOH corrosion inhibitors on copper [J]. J. Am. Chem. Soc., 2010, 132: 16657
5 Zhao H X, Zhang X H, Ji L, et al. Quantitative structure-activity relationship model for amino acids as corrosion inhibitors based on the support vector machine and molecular design [J]. Corros. Sci., 2014, 83: 261
6 Chauhan D S, Mazumder M A J, Quraishi M A, et al. Chitosan-cinnamaldehyde Schiff base: a bioinspired macromolecule as corrosion inhibitor for oil and gas industry [J]. Int. J. Biol. Macromol., 2020, 158: 127
7 Chen G H. Study of the inhibition mechanism and synergistic effect of corrosion inhibitors in sweet system [D]. Beijing: Beijing University of Chemical Technology, 2012
陈国浩. 二氧化碳腐蚀体系缓蚀剂的缓蚀机理及缓蚀协同效应研究 [D]. 北京: 北京化工大学, 2012
8 Lv X H, Zhang Y, Yan Y L, et al. Performance evaluation and adsorption behavior of two new mannich base corrosion inhibitors [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 31
吕祥鸿, 张晔, 闫亚丽等. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 31
9 Luna M C, Le Manh T, Sierra R C, et al. Study of corrosion behavior of API 5L X52 steel in sulfuric acid in the presence of ionic liquid 1-ethyl 3-methylimidazolium thiocyanate as corrosion inhibitor [J]. J. Mol. Liq., 2019, 289: 111106
10 Messali M, Larouj M, Lgaz H, et al. A new schiff base derivative as an effective corrosion inhibitor for mild steel in acidic media: Experimental and computer simulations studies [J]. J. Mol. Struct., 2018, 1168: 39
11 Wang X, Ren S F, Zhang D X, et al. Inhibition effect of soybean meal extract on corrosion of Q235 steel in hydrochloric acid medium [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 267
王霞, 任帅飞, 张代雄等. 豆粕提取物在盐酸中对Q235钢的缓蚀性能 [J]. 中国腐蚀与防护学报, 2019, 39: 267
12 Farhadian A, Rahimi A, Safaei N, et al. A theoretical and experimental study of castor oil-based inhibitor for corrosion inhibition of mild steel in acidic medium at elevated temperatures [J]. Corros. Sci., 2020, 175: 108871
13 Verma C, Ebenso E E, Quraishi M A. Molecular structural aspects of organic corrosion inhibitors: influence of -CN and -NO2 substituents on designing of potential corrosion inhibitors for aqueous media [J]. J. Mol. Liq., 2020, 316: 113874
14 Zhang J T, Li Q D, Zhao J. Research progress of acidizing corrosion inhibitors in oil/gas well [J]. Corros. Prot., 2014, 35: 593
张娟涛, 李谦定, 赵俊. 油气井酸化缓蚀剂研究进展 [J]. 腐蚀与防护, 2014, 35: 593
15 Okafor P C, Liu X, Zheng Y G. Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution [J]. Corros. Sci., 2009, 51: 761
16 Chafiq M, Chaouiki A, Damej M, et al. Bolaamphiphile-class surfactants as corrosion inhibitor model compounds against acid corrosion of mild steel [J]. J. Mol. Liq., 2020, 309: 113070
17 Verma C, Haque J, Ebenso E E, et al. Melamine derivatives as effective corrosion inhibitors for mild steel in acidic solution: chemical, electrochemical, surface and DFT studies [J]. Results. Phys., 2018, 9: 100
18 Liu J G, Gao G, Xu Y Z, et al. Corrosion inhibition performance of imidazoline derivatives [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 523
刘建国, 高歌, 徐亚洲等. 咪唑啉类衍生物缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2018, 38: 523
19 Zhang J L, Zhang L J, Tao G. A novel and high-efficiency inhibitor of 5-(4-methoxyphenyl)-3h-1, 2-dithiole-3-thione for copper corrosion inhibition in sulfuric acid at different temperatures [J]. J. Mol. Liq., 2018, 272: 369
20 Nabatipour S, Mohammadi S, Mohammadi A. Synthesis and comparison of two chromone based Schiff bases containing methoxy and acetamido substitutes as highly sustainable corrosion inhibitors for steel in hydrochloric acid [J]. J. Mol. Struct., 2020, 1217: 128367
21 Soliman S A, Metwally M S, Selim S R, et al. Corrosion inhibition and adsorption behavior of new Schiff base surfactant on steel in acidic environment: Experimental and theoretical studies [J]. J. Ind. Eng. Chem., 2014, 20: 4311
22 Chauhan D S, Verma C, Quraishi M A. Molecular structural aspects of organic corrosion inhibitors: Experimental and computational insights [J]. J. Mol. Struct., 2021, 1227: 129374
23 Zhang D Q, Tang Y M, Qi S J, et al. The inhibition performance of long-chain alkyl-substituted benzimidazole derivatives for corrosion of mild steel in HCl [J]. Corros. Sci., 2016, 102: 517
24 Dražić D M, Vračar L, Dražić V J. The kinetics of inhibitor adsorption on iron [J]. Electrochim. Acta, 1994, 39: 1165
25 De Assis S L, Wolynec S, Costa I. Corrosion characterization of titanium alloys by electrochemical techniques [J]. Electrochim. Acta, 2006, 51: 1815
26 Wang Z B, Hu H X, Liu C B, et al. The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05 M sulfuric acid [J]. Electrochim. Acta, 2014, 135: 526
27 Deng S D, Li X H, Xie X G. Hydroxymethyl urea and 1, 3-bis (hydroxymethyl) urea as corrosion inhibitors for steel in HCl solution [J]. Corros. Sci., 2014, 80: 276
28 Wang H Y, Wei Y H, Du H Y, et al. Corrosion inhibition and adsorption behavior of green corrosion inhibitor SDDTC on AZ31B Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 62
王海媛, 卫英慧, 杜华云等. 绿色缓蚀剂SDDTC对AZ31B镁合金的缓蚀作用及吸附行为 [J]. 中国腐蚀与防护学报, 2018, 38: 62
29 Solomon M M, Umoren S A, Quraishi M A, et al. Effect of akyl chain length, flow, and temperature on the corrosion inhibition of carbon steel in a simulated acidizing environment by an imidazoline-based inhibitor [J]. J. Pet. Sci. Eng., 2020, 187: 106801
30 Zhao Q, Guo J X, Cui G D, et al. Chitosan derivatives as green corrosion inhibitors for P110 steel in a carbon dioxide environment [J]. Colloids Surf., 2020, 194B: 111150
31 Jafari H, Danaee I, Eskandari H, et al. Electrochemical and theoretical studies of adsorption and corrosion inhibition of N, N’-Bis (2-hydroxyethoxyacetophenone)-2, 2-dimethyl-1, 2-propanediimine on Low Carbon Steel (API 5L Grade B) in Acidic Solution [J]. Ind. Eng. Chem. Res., 2013, 52: 6617
32 Feng L, Zhang S T, Qiang Y J, et al. The synergistic corrosion inhibition study of different chain lengths ionic liquids as green inhibitors for X70 steel in acidic medium [J]. Mater. Chem. Phys., 2018, 215: 229
[1] TANG Rongmao, LIU Guangming, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu, LIU Yongqiang. Inhibition and Adsorption Behavior of Sodium Dodecyl-benzene Sulfonate on Q235 Steel in Simulated Concrete Pore Fluid[J]. 中国腐蚀与防护学报, 2021, 41(6): 857-863.
[2] YANG Sheng, ZHANG Huijie, XIANG Wuyuan, OUYANG Tao, XIAO Fen, ZHOU Hui. Effect of Post Surface Treatment of Micro-arc Oxidation Films/TC4 Ti-alloy on Their Morphology and Galvanic Corrosion Performance[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[3] WANG Lizi, HUANG Miao, LI Xianghong. Synergistic Inhibition Effect of Walnut Green Husk Extract and Potassium Iodide on Corrosion of Steel in Citric Acid Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 819-827.
[4] LI Rui, CUI Yu, LIU Li, FAN Lei, MENG Fandi, WANG Fuhui. Corrosion Behavior of Ti60 Alloy in Fog of NaCl Solution at 600 ℃[J]. 中国腐蚀与防护学报, 2021, 41(5): 595-601.
[5] CUI Haoran, LIANG Ping, SHI Yanhua, YANG Zhongkui, HAN Li. Effect of Denitration Agent Concentration on Corrosion Resistance and Critical Pitting Temperature of S2205 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[6] CHEN Tuchun, XIANG Junhuai, JIANG Longfa, XIONG Jian, BAI Lingyun, XU Xunhu, XU Xincheng. High-temperature Corrosion Behavior of Q235 Steel in Oxidizing Atmosphere Containing Chlorine[J]. 中国腐蚀与防护学报, 2021, 41(4): 560-564.
[7] REN Ying, ZHAO Huijun, ZHOU Hao, ZHANG Jianwei, LIU Wen, YANG Zuying, WANG Lei. Effect of Sand Size and Temperature on Synergistic Effect of Erosion-corrosion for 20 Steel in Simulated Oilfield Produced Fluid with Sand[J]. 中国腐蚀与防护学报, 2021, 41(4): 508-516.
[8] TAN Bochuan, ZHANG Shengtao, LI Wenpo, XIANG Bin, QIANG Yujie. Food Spices 2,5-Dihydroxy-1,4-dithiane as an Eco-friendly Corrosion Inhibitor for X70 Steel in 0.5 mol/L H2SO4 Solution[J]. 中国腐蚀与防护学报, 2021, 41(4): 469-476.
[9] WANG Lizi, LI Xianghong. Adsorption and Inhibition Behavior of Imidazoline on Steel Surface in Trichloroacetic Acid Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 353-361.
[10] RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of Temperature on Corrosion Behavior of 14Cr12Ni3-WMoV Stainless Steel in 0.02 mol/L NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[11] CHEN Wen, HUANG Dexing, WEI Feng. Inhibition Effect of Brainea Insignis Extract Against Carbon Steel Corrosion in HCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 376-382.
[12] LI Ruitao, XIAO Bo, LIU Xiao, ZHU Zhongliang, CHENG Yi, LI Junwan, CAO Jieyu, DING Haimin, ZHANG Naiqiang. Corrosion Behavior of Low Alloy Heat-resistant Steel T23 in High-temperature Supercritical Carbon Dioxide[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
[13] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[14] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[15] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
No Suggested Reading articles found!