|
|
Research Progress on Corrosion Resistance of Metallic Glasses |
WANG Dongliang, DING Huaping, MA Yunfei, GONG Pan( ), WANG Xinyun |
State Key Laboratory of Material Processing and Die & Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract Because of their unique amorphous structure, metallic glasses (MGs) exhibit better corrosion resistance compared with traditional crystalline metals and alloys. Thus, MGs have broad application prospects as novel corrosion-resistant materials. The research progress of corrosion resistance of MGs was summarized. The influence factors, such as the alloy composition, microstructure, preparation method, corrosion environment, surface state, stress state etc. on the corrosion resistance of MGs were introduced. The routes to improve the corrosion resistance of MGs were proposed. Finally, the future development trends of corrosion resistance of MGs were discussed and prospected.
|
Received: 24 May 2020
|
|
Fund: Natural Science Foundation of Hubei Provincial(2018CFB576);National Natural Science Foundation of China(51725504);Fundamental Research Funds for the Central Universities(2018KFYRCPT001) |
Corresponding Authors:
GONG Pan
E-mail: pangong@hust.edu.cn
|
About author: GONG Pan, E-mail: pangong@hust.edu.cn
|
1 |
Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
|
2 |
Brenner A, Couch D E, Williams E K. Electrodeposition of alloys of phosphorus with nickel or cobalt [J]. J. Res. Nat. Bureau Stand., 1950, 44: 109
|
3 |
Greer A L, Sun Y H. Stored energy in metallic glasses due to strains within the elastic limit [J]. Philos. Mag., 2016, 96: 1643
|
4 |
Gan Z, Zhang C, Zhang Z, et al. Crystallization-dependent transition of corrosion resistance of an Fe-based bulk metallic glass under hydrostatic pressures[J]. Corros. Sci., 2021, 179: 109098
|
5 |
Han C, Wei Y H, Zhang H F, et al. Corrosion resistance and electrochemical behaviour of amorphous Ni84.9Cr7.4Si4.2Fe3.5 alloy in alkaline and acidic solutions [J]. Acta Metall. Sin.(Engl. Lett.), 2019, 32: 1421
|
6 |
Mao L, Zhu H W, Chen L, et al. Enhancement of corrosion resistance and biocompatibility of Mg-Nd-Zn-Zr alloy achieved with phosphate coating for vascular stent application [J]. J. Mater. Res. Technol., 2020, 9: 6409
|
7 |
Si C R, Duan B B, Zhang Q, et al. Microstructure, corrosion-resistance, and wear-resistance properties of subsonic flame sprayed amorphous Fe-Mo-Cr-Co coating with extremely high amorphous rate [J]. J. Mater. Res. Technol., 2020, 9: 3292
|
8 |
Zhang L C, Jia Z, Lyu F C, et al. A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects [J]. Prog. Mater. Sci, 2019, 105: 100576
|
9 |
Ding S B, Xiang T F, Li C, et al. Fabrication of self-cleaning super-hydrophobic nickel/graphene hybrid film with improved corrosion resistance on mild steel [J]. Mater. Des., 2017, 117: 280
|
10 |
Zhou Q Y, Sheikh S, Ou P, et al. Corrosion behavior of Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy in aqueous chloride solutions [J]. Electrochem. Commun., 2019, 98: 63
|
11 |
Jamali S S, Moulton S E, Tallman D E, et al. Self-healing characteristic of praseodymium conversion coating on AZNd Mg alloy studied by scanning electrochemical microscopy [J]. Electrochem. Commun., 2017, 76: 6
|
12 |
Tian W M, Du N, Li S M, et al. Metastable pitting corrosion of 304 stainless steel in 3.5%NaCl solution [J]. Corros. Sci., 2014, 85: 372
|
13 |
Laleh M, Hughes A E, Xu W, et al. On the unusual intergranular corrosion resistance of 316L stainless steel additively manufactured by selective laser melting [J]. Corros. Sci., 2019, 161: 108189
|
14 |
Coimbrão D D, Zepon G, Koga G Y, et al. Corrosion properties of amorphous, partially, and fully crystallized Fe68Cr8Mo4Nb4B16 alloy [J]. J. Alloy. Compd., 2020, 826: 154123
|
15 |
Tan C G, Jiang W J, Wu X Q, et al. Effect of crystallization on corrosion resistance of Cu52.5Ti30Zrll.5Ni6 bulk amorphous alloy [J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 751
|
16 |
Wu X Q, Xie C Q. Influence of crystallization on corrosion resistance of Al86Ni6La6Cu2 amorphous alloy [J]. J. Rare Earths, 2008, 26: 745
|
17 |
Bi F Q, Zhou B, Wang Y. Effect of alloying on Anti-corrosion performance of stainless steel: A review [J]. Mater. Rev., 2019, 33: 1206
|
|
毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展 [J]. 材料导报, 2019, 33: 1206
|
18 |
Borgioli F, Galvanetto E, Bacci T. Corrosion behaviour of low temperature nitrided nickel-free, AISI 200 and AISI 300 series austenitic stainless steels in NaCl solution [J]. Corros. Sci., 2018, 136: 352
|
19 |
Xu J, Niu J Z, Zhang Z T, et al. Effects of B addition on glass formation, mechanical properties and corrosion resistance of the Zr66.7-xNi33.3Bx(x=0, 1, 3, and 5 at.%) metallic glasses [J]. JOM, 2016, 68: 682
|
20 |
Huang L, Qiao D, Green B A, et al. Bio-corrosion study on zirconium-based bulk-metallic glasses [J]. Intermetallics. 2009, 17(4): 195
|
21 |
Pang S J, Zhang T, Asami K, et al. Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasses with high corrosion resistance [J]. Acta Mater., 2002, 50: 489
|
22 |
Wang S L, Yi S. The corrosion behaviors of Fe-based bulk metallic glasses in a sulfuric solution at 70 ℃ [J]. Intermetallics, 2010, 18: 1950
|
23 |
Chattoraj I, Baunack S, Stoica M, et al. Electrochemical response of Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk amorphous alloy in different aqueous media [J]. Mater. Corros., 2004, 55: 36
|
24 |
Wang J L, Wan Y, Ma Z J, et al. Glass-forming ability and corrosion performance of Mn-doped Mg-Zn-Ca amorphous alloys for biomedical applications [J]. Rare Met., 2018, 37: 579
|
25 |
Zhou J, Li K, Wang B, et al. Impact of Nd addition on glass formation ability and corrosion resistance of Mg-Zn-Ca alloys [J]. Mater. Rev., 2019, 33: 73
|
|
周杰, 李克, 王彪等. 添加Nd对Mg-Zn-Ca合金非晶形成能力和耐蚀性的影响 [J]. 材料导报, 2019, 33: 73
|
26 |
Nie X P, Yang X H, Jiang J Z. Ti microalloying effect on corrosion resistance and thermal stability of CuZr-based bulk metallic glasses [J]. J. Alloy. Compd., 2009, 481: 498
|
27 |
Long Z L, Chang C T, Ding Y H, et al. Corrosion behavior of Fe-based ferromagnetic (Fe, Ni)-B-Si-Nb bulk glassy alloys in aqueous electrolytes [J]. J. Noncrystall. Solids, 2008, 354: 4609
|
28 |
Zhou W, Weng W P, Hou J X. Glass-forming ability and corrosion resistance of Zr-Cu-Al-Co bulk metallic glass [J]. J. Mater. Sci. Technol., 2016, 32: 349
|
29 |
Zhang C, Li N, Pan J, et al. Enhancement of glass-forming ability and bio-corrosion resistance of Zr-Co-Al bulk metallic glasses by the addition of Ag [J]. J. Alloy. Compd., 2010, 504 (): S163
|
30 |
Yu L S, Tang J L, Wang H, et al. Corrosion behavior of bulk (Zr58Nb3Cu16Ni13Al10)100-xYx(x=0, 0.5, 2.5 at.%) metallic glasses in sulfuric acid [J]. Corros. Sci., 2019, 150: 42
|
31 |
Jin Z S, Yang Y J, Zhang Z P, et al. Effect of Hf substitution Cu on glass-forming ability, mechanical properties and corrosion resistance of Ni-free Zr-Ti-Cu-Al bulk metallic glasses [J]. J. Alloy. Compd., 2019, 806: 668
|
32 |
Xu T, Pang S J, Li H F, et al. Corrosion resistant Cr-based bulk metallic glasses with high strength and hardness [J]. J. Non-Crystall. Solids, 2015, 410: 20
|
33 |
Li H F, Pang S J, Liu Y, et al. Biodegradable Mg-Zn-Ca-Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications [J]. Mater. Des., 2015, 67: 9
|
34 |
Cao Q P, Peng S, Zhao X N, et al. Effect of Nb substitution for Cu on glass formation and corrosion behavior of Zr-Cu-Ag-Al-Be bulk metallic glass [J]. J. Alloy. Compd., 2016, 683: 22
|
35 |
Xu T, Pang S J, Zhang T. Glass formation, corrosion behavior, and mechanical properties of novel Cr-rich Cr-Fe-Mo-C-B-Y bulk metallic glasses [J]. J. Alloy. Compd., 2015, 625: 318
|
36 |
Xu D D, Zhou B L, Wang Q Q, et al. Effects of Cr addition on thermal stability, soft magnetic properties and corrosion resistance of FeSiB amorphous alloys [J]. Corros. Sci., 2018, 138: 20
|
37 |
Dan Z H, Takenaka K, Zhang Y, et al. Effect of Si addition on the corrosion properties of amorphous Fe-based soft magnetic alloys [J]. J. Non-Crystall. Solids, 2014, 402: 36
|
38 |
Li X, Zhao X, Liu F, et al. Effect of C addition on the corrosion properties of amorphous Fe-based amorphous alloys [J]. Int. J. Mod. Phys., 2019, 33B: 1940006
|
39 |
Zhang L M, Zhang S D, Ma A L, et al. Influence of cerium content on the corrosion behavior of Al-Co-Ce amorphous alloys in 0.6 M NaCl solution [J]. J. Mater. Sci. Technol., 2019, 35: 1378
|
40 |
Babilas R, Bajorek A, Włodarczyk P, et al. Effect of Au addition on the corrosion activity of Ca-Mg-Zn bulk metallic glasses in Ringer's solution [J]. Mater. Chem. Phys., 2019, 226: 51
|
41 |
Zhou M, Hagos K, Huang H Z, et al. Improved mechanical properties and pitting corrosion resistance of Zr65Cu17.5Fe10Al7.5 bulk metallic glass by isothermal annealing [J]. J. Non-Crystall. Solids, 2016, 452: 50
|
42 |
González S, Pellicer E, Suriñach S, et al. Mechanical and corrosion behaviour of as-cast and annealed Zr60Cu20Al10Fe5Ti5 bulk metallic glass [J]. Intermetallics, 2012, 28: 149
|
43 |
Liu X J, Bu W D, Liu R G. Effects of heat treatment temperature on corrosion resistance of amorphous alloys [J]. J. Netshape Form. Eng., 2018, 10(6): 34
|
|
刘小江, 卜文德, 刘容光. 热处理温度对非晶合金耐蚀性能的影响 [J]. 精密成形工程, 2018, 10(6): 34
|
44 |
Poddar C, Ningshen S, Jayaraj J. Corrosion assessment of Ni60Nb30Ta10 metallic glass and its partially crystallized alloy in concentrated nitric acid environment [J]. J. Alloy. Compd., 2020, 813: 152172
|
45 |
Hua N B, Liao Z L, Wang Q T, et al. Effects of crystallization on mechanical behavior and corrosion performance of a ductile Zr68Al8Ni8Cu16 bulk metallic glass [J]. J. Non-Crystall. Solids, 2020, 529: 119782
|
46 |
Lin J G, Xu J, Wang W W, et al. Electrochemical behavior of partially crystallized amorphous Al86Ni9La5 alloys [J]. Mater. Sci. Eng., 2011, B176: 49
|
47 |
Gu Y D, Zheng Z, Niu S Z, et al. The seawater corrosion resistance and mechanical properties of Cu47.5Zr47.5Al5 bulk metallic glass and its composites [J]. J. Non-Crystall. Solids, 2013, 380: 135
|
48 |
Debnath M R, Kim D H, Fleury E. Dependency of the corrosion properties of in-situ Ti-based BMG matrix composites with the volume fraction of crystalline phase [J]. Intermetallics, 2012, 22: 255
|
49 |
Ríos C T, De Souza J S, Antunes R A. Preparation and characterization of the structure and corrosion behavior of wedge mold cast Fe43.2Co28.8B19.2Si4.8Nb4 bulk amorphous alloy [J]. J. Alloy. Compd., 2016, 682: 412
|
50 |
Fan H B, Zheng W, Wang G Y, et al. Corrosion behavior of Fe41Co7Cr15Mo14C15B6Y2 bulk metallic glass in sulfuric acid solutions [J]. Metall. Mater. Trans., 2011, 42A: 1524
|
51 |
Li G, Huang L, Dong Y, et al. Corrosion behavior of bulk metallic glasses in different aqueous solutions [J]. Sci. China Phys. Mech. Astron., 2010, 53: 435
|
52 |
Shin S, Kim T S, Kang S K. The influence of spark plasma sintering temperature on the mechanical properties and corrosion resistance of Zr65Al10Ni10Cu15 metallic glass powder [J]. Intermetallics, 2010, 18: 2005
|
53 |
Ma X, Zhen N, Guo J J, et al. Preparation of Ni-based bulk metallic glasses with high corrosion resistance [J]. J. Non-Crystall. Solids, 2016, 443: 91
|
54 |
Uhlenhaut D I, Furrer A, Uggowitzer P J, et al. Corrosion properties of glassy Mg70Al15Ga15 in 0.1 M NaCl solution [J]. Intermetallics, 2009, 17: 811
|
55 |
Liu Y, Wang W M, Zhang H D, et al. Effect of compression on the crystallization behavior and corrosion resistance of Al86Ni9La5 amorphous alloy [J]. J. Mater. Sci. Technol., 2012, 28: 1102
|
56 |
Padhy N, Ningshen S, Mudali U K. Electrochemical and surface investigation of zirconium based metallic glass Zr59Ti3Cu20Al10Ni8 alloy in nitric acid and sodium chloride media [J]. J. Alloy. Compd., 2010, 503: 50
|
57 |
Ge W J, Li B Y, Axinte E, et al. Crystallization and corrosion resistance in different aqueous solutions of Zr50.7Ni28Cu9Al12.3 amorphous alloy and its crystallization counterparts [J]. JOM, 2017, 69: 776
|
58 |
Liu S S, Xia C Q, Yang T, et al. High strength and superior corrosion resistance of the Ti-Ni-Cu-Zr crystal/glassy alloys with superelasticity [J]. Mater. Lett., 2019, 260: 126938
|
59 |
Gu J L, Shao Y, Shi L X, et al. Novel corrosion behaviours of the annealing and cryogenic thermal cycling treated Ti-based metallic glasses [J]. Intermetallics, 2019, 110: 106467
|
60 |
Hua N B, Huang Y X, Zheng Z Q, et al. Tribological and corrosion behaviors of Mg56.5Cu27Ag5Dy11.5 bulk metallic glass in NaCl solution [J]. J. Non-Crystall. Solids, 2017, 459: 36
|
61 |
Wang Y B, Li H F, Zheng Y F, et al. Correlation between corrosion performance and surface wettability in ZrTiCuNiBe bulk metallic glasses [J]. Appl. Phys. Lett., 2010, 96: 251909
|
62 |
Ma J, Zhang X Y, Wang D P, et al. Superhydrophobic metallic glass surface with superior mechanical stability and corrosion resistance [J]. Appl. Phys. Lett., 2014, 104: 173701
|
63 |
Gu J L, Shao Y, Bu H T, et al. An abnormal correlation between electron work function and corrosion resistance in Ti-Zr-Be-(Ni/Fe) metallic glasses [J]. Corros. Sci., 2020, 165: 108392
|
64 |
Li H F, Liu Y, Pang S J, et al. Corrosion fatigue behavior of a Mg-based bulk metallic glass in a simulated physiological environment [J]. Intermetallics, 2016, 73: 31
|
65 |
Gostin P F, Eigel D, Grell D, et al. Stress corrosion cracking of a Zr-based bulk metallic glass [J]. Mater. Sci. Eng., 2015, A639: 681
|
66 |
An W K, Cai A H, Xiong X, et al. Effect of tension on corrosive and thermal properties of Cu60Zr30Ti10 metallic glass [J]. J. Alloy. Compd., 2013, 563: 55
|
67 |
Shang S Z, Kong M L, Li Y. Corrsion Behavior of Zr53.5Cu26.5Ni5Al12Ag3 bulk metallic glass in NaOH [J]. J. Shenyang Univ. Chem. Technol., 2012, 26: 199
|
|
尚世智, 孔美玲, 李云. 锆基非晶合金在NaOH溶液中的腐蚀行为 [J]. 沈阳化工大学学报, 2012, 26: 199
|
68 |
Bi F Q, Yang S, Liang Z, et al. Study on high temperature and high pressure corrosion behavior of iron-based amorphous coatings in CO2 Cl- coexisting medium [J]. Chem. Eng. Mach., 2018, 45(2): 157
|
|
毕凤琴, 杨烁, 梁柱等. 铁基非晶涂层在CO2/Cl-共存介质中的高温高压腐蚀行为研究 [J]. 化工机械, 2018, 45(2): 157
|
69 |
Si J J, Chen X H, Cai Y H, et al. Corrosion behavior of Cr-based bulk metallic glasses in hydrochloric acid solutions [J]. Corros. Sci., 2016, 107: 123
|
70 |
Li G H, Wang W M, Ma H J, et al. Effect of different annealing atmospheres on crystallization and corrosion resistance of Al86Ni9La5 amorphous alloy [J]. Mater. Chem. Phys., 2011, 125: 136
|
71 |
Gebert A, Concustell A, Greer A L, et al. Effect of shot-peening on the corrosion resistance of a Zr-based bulk metallic glass [J]. Scripta Mater., 2010, 62: 635
|
72 |
Liu C, Zhou Z F, Li K Y. Improved corrosion resistance of CoCrMo alloy with self-passivation ability facilitated by carbon ion implantation [J]. Electrochim. Acta, 2017, 241: 331
|
73 |
Sharma P, Dhawan A, Sharma S K. Influence of nitrogen ion implantation on corrosion behavior of Zr55Cu30Ni5Al10 amorphous alloy [J]. J. Non-Crystall. Solids, 2019, 511: 186
|
74 |
Chen S S, Tu J X, Hu Q, et al. Corrosion resistance and in vitro bioactivity of Si-containing coating prepared on a biodegradable Mg-Zn-Ca bulk metallic glass by micro-arc oxidation [J]. J. Non-Crystall. Solids, 2017, 456: 125
|
75 |
Tailleart N R, Huang R, Aburada T, et al. Effect of thermally induced relaxation on passivity and corrosion of an amorphous Al-Co-Ce alloy [J]. Corros. Sci., 2012, 59: 238
|
76 |
Liu J T, Hou J X, Zhang X R, et al. Influence of remelting treatment on corrosion behavior of amorphous alloys [J]. Rare Met. Mater. Eng., 2017, 46: 296
|
77 |
Shi H Q, Tang C C, Zhao X Y, et al. Effect of isothermal annealing on mechanical performance and corrosion resistance of Ni-free Zr59Ti6Cu17.5Fe10Al7.5 bulk metallic glass [J]. J. Non-Crystall. Solids, 2020, 537: 120013
|
78 |
Yang Y J, Zhang Z P, Jin Z S, et al. A study on the corrosion behavior of the in-situ Ti-based bulk metallic glass matrix composites in acid solutions [J]. J. Alloy. Compd., 2018, 782: 927
|
79 |
Li J W, Yang L J, Ma H R, et al. Improved corrosion resistance of novel Fe-based amorphous alloys [J]. Mater. Des., 2016, 95: 225
|
80 |
Yang Y J, Jin Z S, Ma X Z, et al. Comparison of corrosion behaviors between Ti-based bulk metallic glasses and its composites [J]. J. Alloy. Compd., 2018, 750: 757
|
81 |
Liang S X, Jia Z, Liu Y J, et al. Compelling rejuvenated catalytic performance in metallic glasses [J]. Adv. Mater., 2018, 30: 1802764
|
82 |
Ding H P, Gong P, Yao K F, et al. The forming of amorphous alloy parts: A technological review [J]. Mater. Rev., 2020, 34(3): 139
|
|
丁华平, 龚攀, 姚可夫等. 非晶合金零件成形技术研究进展 [J]. 材料导报. 2020, 34(3): 139
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|