Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (3): 277-288    DOI: 10.11902/1005.4537.2020.089
Current Issue | Archive | Adv Search |
Research Progress on Corrosion Resistance of Metallic Glasses
WANG Dongliang, DING Huaping, MA Yunfei, GONG Pan(), WANG Xinyun
State Key Laboratory of Material Processing and Die & Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Download:  HTML  PDF(6429KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Because of their unique amorphous structure, metallic glasses (MGs) exhibit better corrosion resistance compared with traditional crystalline metals and alloys. Thus, MGs have broad application prospects as novel corrosion-resistant materials. The research progress of corrosion resistance of MGs was summarized. The influence factors, such as the alloy composition, microstructure, preparation method, corrosion environment, surface state, stress state etc. on the corrosion resistance of MGs were introduced. The routes to improve the corrosion resistance of MGs were proposed. Finally, the future development trends of corrosion resistance of MGs were discussed and prospected.

Key words:  metallic glass      corrosion resistance      influence factor      improving method     
Received:  24 May 2020     
ZTFLH:  TG174  
Fund: Natural Science Foundation of Hubei Provincial(2018CFB576);National Natural Science Foundation of China(51725504);Fundamental Research Funds for the Central Universities(2018KFYRCPT001)
Corresponding Authors:  GONG Pan     E-mail:  pangong@hust.edu.cn
About author:  GONG Pan, E-mail: pangong@hust.edu.cn

Cite this article: 

WANG Dongliang, DING Huaping, MA Yunfei, GONG Pan, WANG Xinyun. Research Progress on Corrosion Resistance of Metallic Glasses. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 277-288.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.089     OR     https://www.jcscp.org/EN/Y2021/V41/I3/277

Fig.1  Corrosion behavior in metallic glasses (MGs) and common stainless steels (SSs) in 3.5%NaCl solution (a), 1 mol/L HCl solution (b) and 1 mol/L NaOH solution (c)
ElementContent x(Atomic fraction / %)Base alloy (Atomic fraction / %)Corroding solutionEffect on corrosion resistanceReferences
Sr0~1%Mg66Zn30Ca4-xSrxPhosphate-buffered salineEnhanced[33]
1%~1.5%Deteriorated
Y0~2.5%(Zr58Nb3Cu16Ni13Al10)100-xYx0.5 mol/L H2SO4Deteriorated[30]
1%(Zr55Al10Cu30Ni5)99YxPhosphate-buffered salineEnhanced[20]
Nb0~20%Zr46Cu(30.14-x)NbxAg8.36Al8Be7.50.1 mol/L HClEnhanced[34]
0.5 mol/L NaClEnhanced
0.5 mol/L H2SO4Enhanced
Nd0~0.5%Mg68-xZn28Ca4NdxSimulated body fluidEnhanced[25]
0.5%~1.5%Deteriorated
Cr0~30%CrxFe56-xCo7Mo14C15B6Y21 mol/L HClEnhanced[32]
30%~45%No difference
0~29.4%CrxFe58.8-xMo14.7C14.7B9.8Y21 mol/L HClEnhanced[35]
29.4%~44.1%No difference
0~8.3%Fe71.4-xC7.1Si4.4B6.5P8.6CrxAl2.09.7 mol/L H2SO4Enhanced[22]
8.3%~12.3%Deteriorated
0~5%Fe79.5-xSi9.5B11Crx0.1 mol/L NaClEnhanced[36]
B0~5%Zr66.7-xNi33.3Bx0.5 mol/L NaClB0.3>B0.1, B0.5>B0[19]
1 mol/L HClB0.5>B0.1, B0.3>B0
2 mol/L NaOHB0.1>B0.5>B0.3, B0
Co0~4%(Zr46Cu46Al8)100-xCox3.5%NaClEnhanced[28]
Ti0~4%(Cu37.6Zr46Ag8.4Al8)100-xTix1 mol/L NaOHEnhanced[26]
1 mol/L H2SO4Enhanced
1 mol/L H2SO4+0.01 mol/L NaClEnhanced
1 mol/L H2SO4+0.1 mol/L NaClEnhanced
Ag0~9%Zr53Co23.5-xAl23.5AgxPhosphate-buffered salineEnhanced[29]
Si0~2%Fe85.2SixB9P5-xCu0.8Boric-borate buffer solutionEnhanced[37]
C0~3%Fe73.5Cu1Nb3Si13.5CxB99-x0.1 mol/L H2SO4Enhanced[38]
Mn0~1.5%(Mg65Zn30Ca5)100-xMnxSimulated body fluidDeteriorated[24]
Ce3%~7%Al93-xCo7Cex0.6 mol/L HClCe4 is the best[39]
Au0~3%Ca47Mg18Zn35-xAuxRinger's solutionEnhanced[40]
P0~15%Fe43Cr16Mo16(C, B, P)251, 6, 12 mol/L HClP>B, C[21]
Ni0~0.4%[(Fe1-xNix)0.75B0.2Si0.05]96Nb40.5 mol/L HClEnhanced[27]
0.5 mol/L H2SO4Enhanced
0.5 mol/L NaOHEnhanced
Hf0~5%Zr55Ti3HfxCu32-xAl100.6 mol/L NaClEnhanced[31]
1 mol/L HClEnhanced
1 mol/L H2SO4Enhanced
Table 1  Summary of the effect of adding alloying elements on corrosion resistance
Fig.2  Potentiodynamic polarization curves of the as-cast and isothermally annealed Zr65Cu17.5Fe10Al7.5 bulk metallic glasses with different times in 3.5%NaCl solution[41]
Fig.3  FESEM images of corroded surface of the as-cast rod (5 mm) (a) and as-annealed rod (3 mm) (b) in the seawater solution[47]
Fig.4  Relationship between Ecorr and pH of Zr50.7Ni28Cu9Al12.3 bulk metallic glasses in 1 mol/L HCl, 0.5 mol/L H2SO4 and 0.5 mol/L NaCl solution[57]
Fig.5  Surface morphologies of carbon implanted (a) and untreated (b) Co-Cr-Mo alloy after corrosion tests[72]
Fig.6  Potentiodynamic polarization curves in 3.5%NaCl solution at room temperature for: (a) Fe71-xCrxMo3.5Ni5P10C4B4Si2.5 amorphous ribbons, (b) x=8 alloy (Fe69.88Cr8.26Mo6.67Ni5.83P6.15C0.95B0.86Si1.4), super duplex stainless steels UNSS32750 (Fe62.99Cr25.15Mo3.43Ni6.74P0.03C0.02Si0.55N0.27Mn0.69Cu0.13), austenitic steel AISI 316L (Fe65.16Cr17.54Mo2.47Ni12.3P0.02C0.03Si0.44Mn1.84), amorphous steel (Fe51.29Cr14.92Mo25.7C3.45B1.24Y3.4). The chemical compositions are given in mass percent for comparison[79]
1 Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
2 Brenner A, Couch D E, Williams E K. Electrodeposition of alloys of phosphorus with nickel or cobalt [J]. J. Res. Nat. Bureau Stand., 1950, 44: 109
3 Greer A L, Sun Y H. Stored energy in metallic glasses due to strains within the elastic limit [J]. Philos. Mag., 2016, 96: 1643
4 Gan Z, Zhang C, Zhang Z, et al. Crystallization-dependent transition of corrosion resistance of an Fe-based bulk metallic glass under hydrostatic pressures[J]. Corros. Sci., 2021, 179: 109098
5 Han C, Wei Y H, Zhang H F, et al. Corrosion resistance and electrochemical behaviour of amorphous Ni84.9Cr7.4Si4.2Fe3.5 alloy in alkaline and acidic solutions [J]. Acta Metall. Sin.(Engl. Lett.), 2019, 32: 1421
6 Mao L, Zhu H W, Chen L, et al. Enhancement of corrosion resistance and biocompatibility of Mg-Nd-Zn-Zr alloy achieved with phosphate coating for vascular stent application [J]. J. Mater. Res. Technol., 2020, 9: 6409
7 Si C R, Duan B B, Zhang Q, et al. Microstructure, corrosion-resistance, and wear-resistance properties of subsonic flame sprayed amorphous Fe-Mo-Cr-Co coating with extremely high amorphous rate [J]. J. Mater. Res. Technol., 2020, 9: 3292
8 Zhang L C, Jia Z, Lyu F C, et al. A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects [J]. Prog. Mater. Sci, 2019, 105: 100576
9 Ding S B, Xiang T F, Li C, et al. Fabrication of self-cleaning super-hydrophobic nickel/graphene hybrid film with improved corrosion resistance on mild steel [J]. Mater. Des., 2017, 117: 280
10 Zhou Q Y, Sheikh S, Ou P, et al. Corrosion behavior of Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy in aqueous chloride solutions [J]. Electrochem. Commun., 2019, 98: 63
11 Jamali S S, Moulton S E, Tallman D E, et al. Self-healing characteristic of praseodymium conversion coating on AZNd Mg alloy studied by scanning electrochemical microscopy [J]. Electrochem. Commun., 2017, 76: 6
12 Tian W M, Du N, Li S M, et al. Metastable pitting corrosion of 304 stainless steel in 3.5%NaCl solution [J]. Corros. Sci., 2014, 85: 372
13 Laleh M, Hughes A E, Xu W, et al. On the unusual intergranular corrosion resistance of 316L stainless steel additively manufactured by selective laser melting [J]. Corros. Sci., 2019, 161: 108189
14 Coimbrão D D, Zepon G, Koga G Y, et al. Corrosion properties of amorphous, partially, and fully crystallized Fe68Cr8Mo4Nb4B16 alloy [J]. J. Alloy. Compd., 2020, 826: 154123
15 Tan C G, Jiang W J, Wu X Q, et al. Effect of crystallization on corrosion resistance of Cu52.5Ti30Zrll.5Ni6 bulk amorphous alloy [J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 751
16 Wu X Q, Xie C Q. Influence of crystallization on corrosion resistance of Al86Ni6La6Cu2 amorphous alloy [J]. J. Rare Earths, 2008, 26: 745
17 Bi F Q, Zhou B, Wang Y. Effect of alloying on Anti-corrosion performance of stainless steel: A review [J]. Mater. Rev., 2019, 33: 1206
毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展 [J]. 材料导报, 2019, 33: 1206
18 Borgioli F, Galvanetto E, Bacci T. Corrosion behaviour of low temperature nitrided nickel-free, AISI 200 and AISI 300 series austenitic stainless steels in NaCl solution [J]. Corros. Sci., 2018, 136: 352
19 Xu J, Niu J Z, Zhang Z T, et al. Effects of B addition on glass formation, mechanical properties and corrosion resistance of the Zr66.7-xNi33.3Bx(x=0, 1, 3, and 5 at.%) metallic glasses [J]. JOM, 2016, 68: 682
20 Huang L, Qiao D, Green B A, et al. Bio-corrosion study on zirconium-based bulk-metallic glasses [J]. Intermetallics. 2009, 17(4): 195
21 Pang S J, Zhang T, Asami K, et al. Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasses with high corrosion resistance [J]. Acta Mater., 2002, 50: 489
22 Wang S L, Yi S. The corrosion behaviors of Fe-based bulk metallic glasses in a sulfuric solution at 70 ℃ [J]. Intermetallics, 2010, 18: 1950
23 Chattoraj I, Baunack S, Stoica M, et al. Electrochemical response of Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk amorphous alloy in different aqueous media [J]. Mater. Corros., 2004, 55: 36
24 Wang J L, Wan Y, Ma Z J, et al. Glass-forming ability and corrosion performance of Mn-doped Mg-Zn-Ca amorphous alloys for biomedical applications [J]. Rare Met., 2018, 37: 579
25 Zhou J, Li K, Wang B, et al. Impact of Nd addition on glass formation ability and corrosion resistance of Mg-Zn-Ca alloys [J]. Mater. Rev., 2019, 33: 73
周杰, 李克, 王彪等. 添加Nd对Mg-Zn-Ca合金非晶形成能力和耐蚀性的影响 [J]. 材料导报, 2019, 33: 73
26 Nie X P, Yang X H, Jiang J Z. Ti microalloying effect on corrosion resistance and thermal stability of CuZr-based bulk metallic glasses [J]. J. Alloy. Compd., 2009, 481: 498
27 Long Z L, Chang C T, Ding Y H, et al. Corrosion behavior of Fe-based ferromagnetic (Fe, Ni)-B-Si-Nb bulk glassy alloys in aqueous electrolytes [J]. J. Noncrystall. Solids, 2008, 354: 4609
28 Zhou W, Weng W P, Hou J X. Glass-forming ability and corrosion resistance of Zr-Cu-Al-Co bulk metallic glass [J]. J. Mater. Sci. Technol., 2016, 32: 349
29 Zhang C, Li N, Pan J, et al. Enhancement of glass-forming ability and bio-corrosion resistance of Zr-Co-Al bulk metallic glasses by the addition of Ag [J]. J. Alloy. Compd., 2010, 504 (): S163
30 Yu L S, Tang J L, Wang H, et al. Corrosion behavior of bulk (Zr58Nb3Cu16Ni13Al10)100-xYx(x=0, 0.5, 2.5 at.%) metallic glasses in sulfuric acid [J]. Corros. Sci., 2019, 150: 42
31 Jin Z S, Yang Y J, Zhang Z P, et al. Effect of Hf substitution Cu on glass-forming ability, mechanical properties and corrosion resistance of Ni-free Zr-Ti-Cu-Al bulk metallic glasses [J]. J. Alloy. Compd., 2019, 806: 668
32 Xu T, Pang S J, Li H F, et al. Corrosion resistant Cr-based bulk metallic glasses with high strength and hardness [J]. J. Non-Crystall. Solids, 2015, 410: 20
33 Li H F, Pang S J, Liu Y, et al. Biodegradable Mg-Zn-Ca-Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications [J]. Mater. Des., 2015, 67: 9
34 Cao Q P, Peng S, Zhao X N, et al. Effect of Nb substitution for Cu on glass formation and corrosion behavior of Zr-Cu-Ag-Al-Be bulk metallic glass [J]. J. Alloy. Compd., 2016, 683: 22
35 Xu T, Pang S J, Zhang T. Glass formation, corrosion behavior, and mechanical properties of novel Cr-rich Cr-Fe-Mo-C-B-Y bulk metallic glasses [J]. J. Alloy. Compd., 2015, 625: 318
36 Xu D D, Zhou B L, Wang Q Q, et al. Effects of Cr addition on thermal stability, soft magnetic properties and corrosion resistance of FeSiB amorphous alloys [J]. Corros. Sci., 2018, 138: 20
37 Dan Z H, Takenaka K, Zhang Y, et al. Effect of Si addition on the corrosion properties of amorphous Fe-based soft magnetic alloys [J]. J. Non-Crystall. Solids, 2014, 402: 36
38 Li X, Zhao X, Liu F, et al. Effect of C addition on the corrosion properties of amorphous Fe-based amorphous alloys [J]. Int. J. Mod. Phys., 2019, 33B: 1940006
39 Zhang L M, Zhang S D, Ma A L, et al. Influence of cerium content on the corrosion behavior of Al-Co-Ce amorphous alloys in 0.6 M NaCl solution [J]. J. Mater. Sci. Technol., 2019, 35: 1378
40 Babilas R, Bajorek A, Włodarczyk P, et al. Effect of Au addition on the corrosion activity of Ca-Mg-Zn bulk metallic glasses in Ringer's solution [J]. Mater. Chem. Phys., 2019, 226: 51
41 Zhou M, Hagos K, Huang H Z, et al. Improved mechanical properties and pitting corrosion resistance of Zr65Cu17.5Fe10Al7.5 bulk metallic glass by isothermal annealing [J]. J. Non-Crystall. Solids, 2016, 452: 50
42 González S, Pellicer E, Suriñach S, et al. Mechanical and corrosion behaviour of as-cast and annealed Zr60Cu20Al10Fe5Ti5 bulk metallic glass [J]. Intermetallics, 2012, 28: 149
43 Liu X J, Bu W D, Liu R G. Effects of heat treatment temperature on corrosion resistance of amorphous alloys [J]. J. Netshape Form. Eng., 2018, 10(6): 34
刘小江, 卜文德, 刘容光. 热处理温度对非晶合金耐蚀性能的影响 [J]. 精密成形工程, 2018, 10(6): 34
44 Poddar C, Ningshen S, Jayaraj J. Corrosion assessment of Ni60Nb30Ta10 metallic glass and its partially crystallized alloy in concentrated nitric acid environment [J]. J. Alloy. Compd., 2020, 813: 152172
45 Hua N B, Liao Z L, Wang Q T, et al. Effects of crystallization on mechanical behavior and corrosion performance of a ductile Zr68Al8Ni8Cu16 bulk metallic glass [J]. J. Non-Crystall. Solids, 2020, 529: 119782
46 Lin J G, Xu J, Wang W W, et al. Electrochemical behavior of partially crystallized amorphous Al86Ni9La5 alloys [J]. Mater. Sci. Eng., 2011, B176: 49
47 Gu Y D, Zheng Z, Niu S Z, et al. The seawater corrosion resistance and mechanical properties of Cu47.5Zr47.5Al5 bulk metallic glass and its composites [J]. J. Non-Crystall. Solids, 2013, 380: 135
48 Debnath M R, Kim D H, Fleury E. Dependency of the corrosion properties of in-situ Ti-based BMG matrix composites with the volume fraction of crystalline phase [J]. Intermetallics, 2012, 22: 255
49 Ríos C T, De Souza J S, Antunes R A. Preparation and characterization of the structure and corrosion behavior of wedge mold cast Fe43.2Co28.8B19.2Si4.8Nb4 bulk amorphous alloy [J]. J. Alloy. Compd., 2016, 682: 412
50 Fan H B, Zheng W, Wang G Y, et al. Corrosion behavior of Fe41Co7Cr15Mo14C15B6Y2 bulk metallic glass in sulfuric acid solutions [J]. Metall. Mater. Trans., 2011, 42A: 1524
51 Li G, Huang L, Dong Y, et al. Corrosion behavior of bulk metallic glasses in different aqueous solutions [J]. Sci. China Phys. Mech. Astron., 2010, 53: 435
52 Shin S, Kim T S, Kang S K. The influence of spark plasma sintering temperature on the mechanical properties and corrosion resistance of Zr65Al10Ni10Cu15 metallic glass powder [J]. Intermetallics, 2010, 18: 2005
53 Ma X, Zhen N, Guo J J, et al. Preparation of Ni-based bulk metallic glasses with high corrosion resistance [J]. J. Non-Crystall. Solids, 2016, 443: 91
54 Uhlenhaut D I, Furrer A, Uggowitzer P J, et al. Corrosion properties of glassy Mg70Al15Ga15 in 0.1 M NaCl solution [J]. Intermetallics, 2009, 17: 811
55 Liu Y, Wang W M, Zhang H D, et al. Effect of compression on the crystallization behavior and corrosion resistance of Al86Ni9La5 amorphous alloy [J]. J. Mater. Sci. Technol., 2012, 28: 1102
56 Padhy N, Ningshen S, Mudali U K. Electrochemical and surface investigation of zirconium based metallic glass Zr59Ti3Cu20Al10Ni8 alloy in nitric acid and sodium chloride media [J]. J. Alloy. Compd., 2010, 503: 50
57 Ge W J, Li B Y, Axinte E, et al. Crystallization and corrosion resistance in different aqueous solutions of Zr50.7Ni28Cu9Al12.3 amorphous alloy and its crystallization counterparts [J]. JOM, 2017, 69: 776
58 Liu S S, Xia C Q, Yang T, et al. High strength and superior corrosion resistance of the Ti-Ni-Cu-Zr crystal/glassy alloys with superelasticity [J]. Mater. Lett., 2019, 260: 126938
59 Gu J L, Shao Y, Shi L X, et al. Novel corrosion behaviours of the annealing and cryogenic thermal cycling treated Ti-based metallic glasses [J]. Intermetallics, 2019, 110: 106467
60 Hua N B, Huang Y X, Zheng Z Q, et al. Tribological and corrosion behaviors of Mg56.5Cu27Ag5Dy11.5 bulk metallic glass in NaCl solution [J]. J. Non-Crystall. Solids, 2017, 459: 36
61 Wang Y B, Li H F, Zheng Y F, et al. Correlation between corrosion performance and surface wettability in ZrTiCuNiBe bulk metallic glasses [J]. Appl. Phys. Lett., 2010, 96: 251909
62 Ma J, Zhang X Y, Wang D P, et al. Superhydrophobic metallic glass surface with superior mechanical stability and corrosion resistance [J]. Appl. Phys. Lett., 2014, 104: 173701
63 Gu J L, Shao Y, Bu H T, et al. An abnormal correlation between electron work function and corrosion resistance in Ti-Zr-Be-(Ni/Fe) metallic glasses [J]. Corros. Sci., 2020, 165: 108392
64 Li H F, Liu Y, Pang S J, et al. Corrosion fatigue behavior of a Mg-based bulk metallic glass in a simulated physiological environment [J]. Intermetallics, 2016, 73: 31
65 Gostin P F, Eigel D, Grell D, et al. Stress corrosion cracking of a Zr-based bulk metallic glass [J]. Mater. Sci. Eng., 2015, A639: 681
66 An W K, Cai A H, Xiong X, et al. Effect of tension on corrosive and thermal properties of Cu60Zr30Ti10 metallic glass [J]. J. Alloy. Compd., 2013, 563: 55
67 Shang S Z, Kong M L, Li Y. Corrsion Behavior of Zr53.5Cu26.5Ni5Al12Ag3 bulk metallic glass in NaOH [J]. J. Shenyang Univ. Chem. Technol., 2012, 26: 199
尚世智, 孔美玲, 李云. 锆基非晶合金在NaOH溶液中的腐蚀行为 [J]. 沈阳化工大学学报, 2012, 26: 199
68 Bi F Q, Yang S, Liang Z, et al. Study on high temperature and high pressure corrosion behavior of iron-based amorphous coatings in CO2 Cl- coexisting medium [J]. Chem. Eng. Mach., 2018, 45(2): 157
毕凤琴, 杨烁, 梁柱等. 铁基非晶涂层在CO2/Cl-共存介质中的高温高压腐蚀行为研究 [J]. 化工机械, 2018, 45(2): 157
69 Si J J, Chen X H, Cai Y H, et al. Corrosion behavior of Cr-based bulk metallic glasses in hydrochloric acid solutions [J]. Corros. Sci., 2016, 107: 123
70 Li G H, Wang W M, Ma H J, et al. Effect of different annealing atmospheres on crystallization and corrosion resistance of Al86Ni9La5 amorphous alloy [J]. Mater. Chem. Phys., 2011, 125: 136
71 Gebert A, Concustell A, Greer A L, et al. Effect of shot-peening on the corrosion resistance of a Zr-based bulk metallic glass [J]. Scripta Mater., 2010, 62: 635
72 Liu C, Zhou Z F, Li K Y. Improved corrosion resistance of CoCrMo alloy with self-passivation ability facilitated by carbon ion implantation [J]. Electrochim. Acta, 2017, 241: 331
73 Sharma P, Dhawan A, Sharma S K. Influence of nitrogen ion implantation on corrosion behavior of Zr55Cu30Ni5Al10 amorphous alloy [J]. J. Non-Crystall. Solids, 2019, 511: 186
74 Chen S S, Tu J X, Hu Q, et al. Corrosion resistance and in vitro bioactivity of Si-containing coating prepared on a biodegradable Mg-Zn-Ca bulk metallic glass by micro-arc oxidation [J]. J. Non-Crystall. Solids, 2017, 456: 125
75 Tailleart N R, Huang R, Aburada T, et al. Effect of thermally induced relaxation on passivity and corrosion of an amorphous Al-Co-Ce alloy [J]. Corros. Sci., 2012, 59: 238
76 Liu J T, Hou J X, Zhang X R, et al. Influence of remelting treatment on corrosion behavior of amorphous alloys [J]. Rare Met. Mater. Eng., 2017, 46: 296
77 Shi H Q, Tang C C, Zhao X Y, et al. Effect of isothermal annealing on mechanical performance and corrosion resistance of Ni-free Zr59Ti6Cu17.5Fe10Al7.5 bulk metallic glass [J]. J. Non-Crystall. Solids, 2020, 537: 120013
78 Yang Y J, Zhang Z P, Jin Z S, et al. A study on the corrosion behavior of the in-situ Ti-based bulk metallic glass matrix composites in acid solutions [J]. J. Alloy. Compd., 2018, 782: 927
79 Li J W, Yang L J, Ma H R, et al. Improved corrosion resistance of novel Fe-based amorphous alloys [J]. Mater. Des., 2016, 95: 225
80 Yang Y J, Jin Z S, Ma X Z, et al. Comparison of corrosion behaviors between Ti-based bulk metallic glasses and its composites [J]. J. Alloy. Compd., 2018, 750: 757
81 Liang S X, Jia Z, Liu Y J, et al. Compelling rejuvenated catalytic performance in metallic glasses [J]. Adv. Mater., 2018, 30: 1802764
82 Ding H P, Gong P, Yao K F, et al. The forming of amorphous alloy parts: A technological review [J]. Mater. Rev., 2020, 34(3): 139
丁华平, 龚攀, 姚可夫等. 非晶合金零件成形技术研究进展 [J]. 材料导报. 2020, 34(3): 139
[1] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[3] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[5] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[6] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[7] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[8] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[9] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[10] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[11] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[12] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[13] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[14] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[15] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
No Suggested Reading articles found!