|
|
Effect of Temperature on Corrosion Behavior of 14Cr12Ni3-WMoV Stainless Steel in 0.02 mol/L NaCl Solution |
RAN Dou1,2, MENG Huimin1, LI Quande1,2,3( ), GONG Xiufang2,3, NI Rong2,3, JIANG Ying2,3, GONG Xianlong2,3, DAI Jun2,3, LONG Bin2,3( ) |
1.Institute of Advance Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 2.State Key Laboratory of Long-life High Temperature Materials, Deyang 618000, China 3.Dongfang Turbine Co. , Ltd. , Deyang 618000, China |
|
|
Abstract The effect of temperature on the corrosion behavior of 14Cr12Ni3WMoV stainless steel for the final stage blade of steam turbine in 0.02 mol/L NaCl solution was studied by means of electrochemical techniques including open circuit potential measurement, potentiodynamic polarization measurement and electrochemical impedance spectroscopy, as well as laser scanning confocal microscopy and scanning electron microscopy coupled with energy dispersive spectroscopy. The results show that with the increasing temperature, both the corrosion tendency and corrosion rate of 14Cr12Ni3WMoV stainless steel increase. Meanwhile, its pitting sensitivity increases with weakened self-repairing ability of its passivation film, thus the corrosion resistance of the steel decreases. The corrosion pit develops faster in the radial direction,but its development in depth slows down with the increasing temperature. When pitting occurs, Fe, Cr, Ni, W, Mo and V in the steel selectively dissolve, demonstrating that Fe and Ni dissolve quickly, while Cr, W, Mo and V are enriched in the corrosion pit due to their slow dissolution, whereas the change of temperature has no obvious effect on the enrichment of Cr, W, Mo and V.
|
Received: 23 April 2020
|
|
Fund: Sichuan Applied Foundation Project(2019YJ0699);Project of State Key Laboratory of Long-life High Temperature Materials(DTCC28EE190230) |
Corresponding Authors:
LI Quande,LONG Bin
E-mail: quandelee@126.com;longbin@dongfang.com
|
About author: LI Quande, E-mail: quandelee@126.com LONG Bin, E-mail: longbin@dongfang.com
|
Cite this article:
RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of Temperature on Corrosion Behavior of 14Cr12Ni3-WMoV Stainless Steel in 0.02 mol/L NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 362-368.
URL:
https://www.jcscp.org/EN/10.11902/1005.4537.2020.073 OR https://www.jcscp.org/EN/Y2021/V41/I3/362
|
1 |
Wang W Z, Xuan F Z, Zhu K L, et al. Failure analysis of the final stage blade in steam turbine [J]. Eng. Fail. Anal., 2007, 14: 632
|
2 |
Hu P. Development of anti-erosion surface treatments used in last blades of steam turbine [J]. Surf. Technol., 2008, 37(6): 78
|
|
胡平. 汽轮机末级叶片表面防水蚀处理工艺及发展 [J]. 表面技术, 2008, 37(6): 78
|
3 |
Aliabadi M A F, Lakzian E, Khazaei I, et al. A comprehensive investigation of finding the best location for hot steam injection into the wet steam turbine blade cascade [J]. Energy, 2020, 190: 116397
|
4 |
Rodríguez J A, Castro L, Tejeda A L, et al. Fatigue of steam turbine blades at resonance conditions [J]. Eng. Fail. Anal., 2019, 104: 39
|
5 |
Perkins K M, Bache M R. Corrosion fatigue of a 12%Cr low pressure turbine blade steel in simulated service environments [J]. Int. J. Fatigue, 2005, 27: 1499
|
6 |
Schönbauer B M, Perlega A, Stanzl-Tschegg S E. Pit-to-crack transition and corrosion fatigue of 12%Cr steam turbine blade steel [A]. 13th International Conference on Fracture [C]. Beijing, 2013
|
7 |
Katinić M, Kozak D, Gelo I, et al. Corrosion fatigue failure of steam turbine moving blades: A case study [J]. Eng. Fail. Anal., 2019, 106: 104136
|
8 |
Kim H. Crack evaluation of the fourth stage blade in a low-pressure steam turbine [J]. Eng. Fail. Anal., 2011, 18: 907
|
9 |
Ziegler D, Puccinelli M, Bergallo B, et al. Investigation of turbine blade failure in a thermal power plant [J]. Case Stud. Eng. Fail. Anal., 2013, 1: 192
|
10 |
Adnyana D N. Corrosion fatigue of a low-pressure steam turbine blade [J]. J. Fail. Anal. Prev., 2018, 18: 162
|
11 |
Mazur Z, Garcia-Illescas R, Aguirre-Romano J, et al. Steam turbine blade failure analysis [J]. Eng. Fail. Anal., 2008, 15: 129
|
12 |
Stefanoni M, Angst U, Elsener B. Local electrochemistry of reinforcement steel-Distribution of open circuit and pitting potentials on steels with different surface condition [J]. Corros. Sci., 2015, 98: 610
|
13 |
Arjmand F, Zhang L F, Wang J M. Effect of temperature, chloride and dissolved oxygen concentration on the open circuit and transpassive potential values of 316L stainless steel at high-temperature pressurized water [J]. Nucl. Eng. Des., 2017, 322: 215
|
14 |
Rui J Q, Li J, Sun H D, et al. Influence of pH on the electrochemical bahavior of 00Cr15Ni7Mo2Cu2 supermartensitic stainless steel in 3.5%NaCl solutions [J]. Adv. Mater. Res., 2012, 581/582: 1058
|
15 |
Ebrahimi N, Momeni M, Kosari A, et al. A comparative study of critical pitting temperature (CPT) of stainless steels by electrochemical impedance spectroscopy (EIS), potentiodynamic and potentiostatic techniques [J]. Corros. Sci., 2012, 59: 96
|
16 |
Shi L, Zhang Z J, Gao Y. Mechanism and research methods of pitting corrosion of stainless steels [J]. Mater. Rev., 2015, 29(23): 79
|
|
石林, 郑志军, 高岩. 不锈钢的点蚀机理及研究方法 [J]. 材料导报, 2015, 29(23): 79
|
17 |
Zhang H R, Hao Y. Corrosion behavior of AZ91D magnesium alloy in Cl- solution [J]. Res. Stud. Found. Equip., 2007, (3): 19
|
|
张汉茹, 郝远. AZ91D镁合金在含Cl-溶液中腐蚀机理的研究 [J]. 铸造设备与工艺, 2007, (3): 19
|
18 |
Wang Y F, Xie F Q. Corrosion behaviors of super 13Cr tubing steels in NaCl solution with different concentration [J]. Mater. Rev., 2018, 32: 2847
|
|
王毅飞, 谢发勤. 超级13Cr油管钢在不同浓度Cl-介质中的腐蚀行为 [J]. 材料导报, 2018, 32: 2847
|
19 |
Wei X, Dong J H, Tong J, et al. Influence of temperature on pitting corrosion resistance of Cr26Mo1 ultra pure high chromium ferrite stainless steel in 3.5%NaCl solution [J]. Acta Metall. Sin., 2012, 48: 502
|
|
魏欣, 董俊华, 佟健等. 温度对Cr26Mol超纯高铬铁素体不锈钢在3.5%NaCl溶液中耐点蚀性能的影响 [J]. 金属学报, 2012, 48: 502
|
20 |
Rui J Q. Corrosion and passivity behavior of 15Cr super martensitic stainless steel [D]. Kunming: Kunming University of Science and Technology, 2013
|
|
芮家群. 15Cr超级马氏体不锈钢的腐蚀及钝化行为的研究 [D]. 昆明: 昆明理工大学, 2013
|
21 |
Hu G, Xu C C, Zhang X S. Composition and structure of the passive film of 304 stainless steel in an occluded solution [J]. J. Beijing Univ. Chem. Technol. (Nat. Sci. Ed.), 2003, 30: 20
|
|
胡钢, 许淳淳, 张新生. 304不锈钢在闭塞区溶液中钝化膜组成和结构性能 [J]. 北京化工大学学报 (自然科学版), 2003, 30: 20
|
22 |
Wu W W, Jiang Y M, Liao J X, et al. Influence of Cl- on critical pitting temperature for 304 and 316 stainless steels [J]. Corros. Sci. Prot. Technol., 2007, 19: 16
|
|
吴玮巍, 蒋益明, 廖家兴等. Cl离子对304、316不锈钢临界点蚀温度的影响 [J]. 腐蚀科学与防护技术, 2007, 19: 16
|
23 |
Wang B, Du N, Zhang H, et al. Accelerating effect of pitting corrosion products on metastable pitting initiation and the stable pitting growth of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 338
|
|
王标, 杜楠, 张浩等. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用 [J]. 中国腐蚀与防护学报, 2019, 39: 338
|
24 |
Lyu N X, Liu K P, Yin C X, et al. Effect of HCO3- on passivation and pitting behavior of super 13Cr martensitic stainless steel [J]. Surf. Technol., 2019, 48(5): 36
|
|
吕乃欣, 刘开平, 尹成先等. HCO3-对超级13Cr马氏体不锈钢钝化行为及点蚀行为的影响 [J]. 表面技术, 2019, 48(5): 36
|
25 |
Wang Z. Investigation of the corrosion behavior and passive film degradation for austenitic stainless steel in H2S-containing environment [D]. Beijing: University of Science and Technology Beijing, 2018
|
|
王竹. 奥氏体不锈钢在H2S环境下的腐蚀行为与钝化膜演化研究 [D]. 北京: 北京科技大学, 2018
|
26 |
Li Y, Cheng Y F. Passive film growth on carbon steel and its nanoscale features at various passivating potentials [J]. Appl. Surf. Sci., 2017, 396: 144
|
27 |
Cheng C Q, Zhang Z P, Li R, et al. Effect of temperature on pitting corrosion of 430 stainless steel under dry and wet cycle of droplet [J]. Surf. Technol., 2019, 48(6): 245
|
|
程从前, 张志鹏, 李然等. 温度对液滴干湿循环下430不锈钢点蚀的影响 [J]. 表面技术, 2019, 48(6): 245
|
28 |
Kong D C, Ni X Q, Dong C F, et al. Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells [J]. Electrochim. Acta, 2018, 276: 293
|
29 |
Li H Y. Passivity and pitting behavior of ultra high strength martensitic stainless steel [D]. Beijing: University of Science and Technology Beijing, 2017
|
|
李慧艳. 超高强度马氏体不锈钢钝化与点蚀行为研究 [D]. 北京: 北京科技大学, 2017
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|