Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (3): 362-368    DOI: 10.11902/1005.4537.2020.073
Current Issue | Archive | Adv Search |
Effect of Temperature on Corrosion Behavior of 14Cr12Ni3-WMoV Stainless Steel in 0.02 mol/L NaCl Solution
RAN Dou1,2, MENG Huimin1, LI Quande1,2,3(), GONG Xiufang2,3, NI Rong2,3, JIANG Ying2,3, GONG Xianlong2,3, DAI Jun2,3, LONG Bin2,3()
1.Institute of Advance Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.State Key Laboratory of Long-life High Temperature Materials, Deyang 618000, China
3.Dongfang Turbine Co. , Ltd. , Deyang 618000, China
Download:  HTML  PDF(9204KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of temperature on the corrosion behavior of 14Cr12Ni3WMoV stainless steel for the final stage blade of steam turbine in 0.02 mol/L NaCl solution was studied by means of electrochemical techniques including open circuit potential measurement, potentiodynamic polarization measurement and electrochemical impedance spectroscopy, as well as laser scanning confocal microscopy and scanning electron microscopy coupled with energy dispersive spectroscopy. The results show that with the increasing temperature, both the corrosion tendency and corrosion rate of 14Cr12Ni3WMoV stainless steel increase. Meanwhile, its pitting sensitivity increases with weakened self-repairing ability of its passivation film, thus the corrosion resistance of the steel decreases. The corrosion pit develops faster in the radial direction,but its development in depth slows down with the increasing temperature. When pitting occurs, Fe, Cr, Ni, W, Mo and V in the steel selectively dissolve, demonstrating that Fe and Ni dissolve quickly, while Cr, W, Mo and V are enriched in the corrosion pit due to their slow dissolution, whereas the change of temperature has no obvious effect on the enrichment of Cr, W, Mo and V.

Key words:  electrochemistry corrosion      stainless steel      blade      steam turbine      temperature      passivation film     
Received:  23 April 2020     
ZTFLH:  TG174  
Fund: Sichuan Applied Foundation Project(2019YJ0699);Project of State Key Laboratory of Long-life High Temperature Materials(DTCC28EE190230)
Corresponding Authors:  LI Quande,LONG Bin     E-mail:  quandelee@126.com;longbin@dongfang.com
About author:  LI Quande, E-mail: quandelee@126.com
LONG Bin, E-mail: longbin@dongfang.com

Cite this article: 

RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of Temperature on Corrosion Behavior of 14Cr12Ni3-WMoV Stainless Steel in 0.02 mol/L NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 362-368.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.073     OR     https://www.jcscp.org/EN/Y2021/V41/I3/362

Fig.1  Open circuit potentials for 14Cr12Ni3WMoV stainless steel in 0.02 mol/L NaCl solution at different temperatures
Fig.2  Potentiodynamic polarization curves (a) and pitting potential (b) of 14Cr12Ni3WMoV stainless steel in 0.02 mol/L NaCl solution at different temperatures
Temperature / ℃Ecorr / VIcorr / A·cm-2Eb / V
40-0.1820.55×10-60.156
60-0.1741.07×10-60.118
80-0.2061.39×10-60.084
Table 1  Electrochemical parameters of 14Cr12Ni3WMoV stainless steel in 0.02 mol/L NaCl solution at different temperatures
Fig.3  Nyquist (a) and Bode (b) plots of 14Cr12Ni3-WMoV stainless steel in 0.02 mol/L NaCl solution at different temperatures
Fig.4  Equivalent circuits of EIS curves at different temperatures
Temperature℃RsΩ·cm2QfRfΩ·cm2
Y0 / Ω-1·cm-2·Snn
40186.43.72×10-50.905.27×105
60142.74.16×10-50.889.12×104
80139.66.61×10-50.853.62×104
Table 2  Fitting results of equivalent circuits at different temperatures
Fig.5  Corrosion and 3D morphologies of 14Cr12Ni3WMoV stainless steel in 0.02 mol/L NaCl solution at 40 ℃ (a), 60 ℃ (b) and 80 ℃ (c)
Fig.6  Depth and diameter of the max pitting of 14Cr12Ni3WMoV stainless steel in 0.02 mol/L NaCl solution at different temperatures
Fig.7  Element distribution of the pit in 14Cr12Ni3WMoV stainless steel samples at 80 ℃: (a) Cr, (b) Fe, (c) Mo, (d) W, (e) V, (f) Ni
Fig.8  Element distribution of the pit in 14Cr12Ni3WMoV stainless steel samples at 40 ℃: (a) Cr, (b) Fe, (c) Mo, (d) W, (e) V, (f) Ni
1 Wang W Z, Xuan F Z, Zhu K L, et al. Failure analysis of the final stage blade in steam turbine [J]. Eng. Fail. Anal., 2007, 14: 632
2 Hu P. Development of anti-erosion surface treatments used in last blades of steam turbine [J]. Surf. Technol., 2008, 37(6): 78
胡平. 汽轮机末级叶片表面防水蚀处理工艺及发展 [J]. 表面技术, 2008, 37(6): 78
3 Aliabadi M A F, Lakzian E, Khazaei I, et al. A comprehensive investigation of finding the best location for hot steam injection into the wet steam turbine blade cascade [J]. Energy, 2020, 190: 116397
4 Rodríguez J A, Castro L, Tejeda A L, et al. Fatigue of steam turbine blades at resonance conditions [J]. Eng. Fail. Anal., 2019, 104: 39
5 Perkins K M, Bache M R. Corrosion fatigue of a 12%Cr low pressure turbine blade steel in simulated service environments [J]. Int. J. Fatigue, 2005, 27: 1499
6 Schönbauer B M, Perlega A, Stanzl-Tschegg S E. Pit-to-crack transition and corrosion fatigue of 12%Cr steam turbine blade steel [A]. 13th International Conference on Fracture [C]. Beijing, 2013
7 Katinić M, Kozak D, Gelo I, et al. Corrosion fatigue failure of steam turbine moving blades: A case study [J]. Eng. Fail. Anal., 2019, 106: 104136
8 Kim H. Crack evaluation of the fourth stage blade in a low-pressure steam turbine [J]. Eng. Fail. Anal., 2011, 18: 907
9 Ziegler D, Puccinelli M, Bergallo B, et al. Investigation of turbine blade failure in a thermal power plant [J]. Case Stud. Eng. Fail. Anal., 2013, 1: 192
10 Adnyana D N. Corrosion fatigue of a low-pressure steam turbine blade [J]. J. Fail. Anal. Prev., 2018, 18: 162
11 Mazur Z, Garcia-Illescas R, Aguirre-Romano J, et al. Steam turbine blade failure analysis [J]. Eng. Fail. Anal., 2008, 15: 129
12 Stefanoni M, Angst U, Elsener B. Local electrochemistry of reinforcement steel-Distribution of open circuit and pitting potentials on steels with different surface condition [J]. Corros. Sci., 2015, 98: 610
13 Arjmand F, Zhang L F, Wang J M. Effect of temperature, chloride and dissolved oxygen concentration on the open circuit and transpassive potential values of 316L stainless steel at high-temperature pressurized water [J]. Nucl. Eng. Des., 2017, 322: 215
14 Rui J Q, Li J, Sun H D, et al. Influence of pH on the electrochemical bahavior of 00Cr15Ni7Mo2Cu2 supermartensitic stainless steel in 3.5%NaCl solutions [J]. Adv. Mater. Res., 2012, 581/582: 1058
15 Ebrahimi N, Momeni M, Kosari A, et al. A comparative study of critical pitting temperature (CPT) of stainless steels by electrochemical impedance spectroscopy (EIS), potentiodynamic and potentiostatic techniques [J]. Corros. Sci., 2012, 59: 96
16 Shi L, Zhang Z J, Gao Y. Mechanism and research methods of pitting corrosion of stainless steels [J]. Mater. Rev., 2015, 29(23): 79
石林, 郑志军, 高岩. 不锈钢的点蚀机理及研究方法 [J]. 材料导报, 2015, 29(23): 79
17 Zhang H R, Hao Y. Corrosion behavior of AZ91D magnesium alloy in Cl- solution [J]. Res. Stud. Found. Equip., 2007, (3): 19
张汉茹, 郝远. AZ91D镁合金在含Cl-溶液中腐蚀机理的研究 [J]. 铸造设备与工艺, 2007, (3): 19
18 Wang Y F, Xie F Q. Corrosion behaviors of super 13Cr tubing steels in NaCl solution with different concentration [J]. Mater. Rev., 2018, 32: 2847
王毅飞, 谢发勤. 超级13Cr油管钢在不同浓度Cl-介质中的腐蚀行为 [J]. 材料导报, 2018, 32: 2847
19 Wei X, Dong J H, Tong J, et al. Influence of temperature on pitting corrosion resistance of Cr26Mo1 ultra pure high chromium ferrite stainless steel in 3.5%NaCl solution [J]. Acta Metall. Sin., 2012, 48: 502
魏欣, 董俊华, 佟健等. 温度对Cr26Mol超纯高铬铁素体不锈钢在3.5%NaCl溶液中耐点蚀性能的影响 [J]. 金属学报, 2012, 48: 502
20 Rui J Q. Corrosion and passivity behavior of 15Cr super martensitic stainless steel [D]. Kunming: Kunming University of Science and Technology, 2013
芮家群. 15Cr超级马氏体不锈钢的腐蚀及钝化行为的研究 [D]. 昆明: 昆明理工大学, 2013
21 Hu G, Xu C C, Zhang X S. Composition and structure of the passive film of 304 stainless steel in an occluded solution [J]. J. Beijing Univ. Chem. Technol. (Nat. Sci. Ed.), 2003, 30: 20
胡钢, 许淳淳, 张新生. 304不锈钢在闭塞区溶液中钝化膜组成和结构性能 [J]. 北京化工大学学报 (自然科学版), 2003, 30: 20
22 Wu W W, Jiang Y M, Liao J X, et al. Influence of Cl- on critical pitting temperature for 304 and 316 stainless steels [J]. Corros. Sci. Prot. Technol., 2007, 19: 16
吴玮巍, 蒋益明, 廖家兴等. Cl离子对304、316不锈钢临界点蚀温度的影响 [J]. 腐蚀科学与防护技术, 2007, 19: 16
23 Wang B, Du N, Zhang H, et al. Accelerating effect of pitting corrosion products on metastable pitting initiation and the stable pitting growth of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 338
王标, 杜楠, 张浩等. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用 [J]. 中国腐蚀与防护学报, 2019, 39: 338
24 Lyu N X, Liu K P, Yin C X, et al. Effect of HCO3- on passivation and pitting behavior of super 13Cr martensitic stainless steel [J]. Surf. Technol., 2019, 48(5): 36
吕乃欣, 刘开平, 尹成先等. HCO3-对超级13Cr马氏体不锈钢钝化行为及点蚀行为的影响 [J]. 表面技术, 2019, 48(5): 36
25 Wang Z. Investigation of the corrosion behavior and passive film degradation for austenitic stainless steel in H2S-containing environment [D]. Beijing: University of Science and Technology Beijing, 2018
王竹. 奥氏体不锈钢在H2S环境下的腐蚀行为与钝化膜演化研究 [D]. 北京: 北京科技大学, 2018
26 Li Y, Cheng Y F. Passive film growth on carbon steel and its nanoscale features at various passivating potentials [J]. Appl. Surf. Sci., 2017, 396: 144
27 Cheng C Q, Zhang Z P, Li R, et al. Effect of temperature on pitting corrosion of 430 stainless steel under dry and wet cycle of droplet [J]. Surf. Technol., 2019, 48(6): 245
程从前, 张志鹏, 李然等. 温度对液滴干湿循环下430不锈钢点蚀的影响 [J]. 表面技术, 2019, 48(6): 245
28 Kong D C, Ni X Q, Dong C F, et al. Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells [J]. Electrochim. Acta, 2018, 276: 293
29 Li H Y. Passivity and pitting behavior of ultra high strength martensitic stainless steel [D]. Beijing: University of Science and Technology Beijing, 2017
李慧艳. 超高强度马氏体不锈钢钝化与点蚀行为研究 [D]. 北京: 北京科技大学, 2017
[1] LI Ruitao, XIAO Bo, LIU Xiao, ZHU Zhongliang, CHENG Yi, LI Junwan, CAO Jieyu, DING Haimin, ZHANG Naiqiang. Corrosion Behavior of Low Alloy Heat-resistant Steel T23 in High-temperature Supercritical Carbon Dioxide[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
[2] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[3] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[4] ZHANG Huiyun, ZHENG Liuwei, MENG Xianming, LIANG Wei. Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement Sensitivity of Cr15 Ferritic and 304 Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[5] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[8] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[9] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[10] WANG Lei, DONG Junhua, HAN Da, LIANG Jiankun, LI Quan, KE Wei. Phenonmenon of Cu Segregation in Cu-containing steel During Soaking at 1150 ℃[J]. 中国腐蚀与防护学报, 2020, 40(6): 545-552.
[11] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[12] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[13] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[14] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[15] WANG Haiwei, CHANG Sen, LUAN Xin'gang, SONG Xuemei, WANG Zhen, LI Yanzhang, CHEN Jianli, ZHANG Jirong, HAN Ming, QIU Dangui. Preparation and Properties of Ceramics Composed of Nano-Al2O3 and Polysiloxane-polyborosilicate-TiB2 Modified Polysilborazane as High Temperature Adhesive for SiC Based Ceramics[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
No Suggested Reading articles found!