Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (3): 307-317    DOI: 10.11902/1005.4537.2020.061
Current Issue | Archive | Adv Search |
Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water
LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu()
School of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113001, China
Download:  HTML  PDF(18034KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of hydrostatic pressure on the corrosion behavior of X70 steel in simulated sea water was studied in the pressure range of 0~3 MPa by means of high temperature and high pressure reaction kettle, mass loss measurement, electrochemical means and slow strain tensile method, as well as XRD, SEM and EDS. The results showed that X70 steel suffered from localized corrosion and the main component of the corrosion product was FeOOH in the pressure range of 0~2 MPa. When the hydrostatic pressure was 3 MPa, the corrosion morphology turned to be general corrosion, and a small amount of Fe3O4 appeared in addition to FeOOH in the corrosion product. With the increase of hydrostatic pressure, the corrosion rate of X70 steel increased first and then decreased, and reached the maximum by 2 MPa. When the hydrostatic pressure was in the range of 0~2 MPa, the stress corrosion cracking (SCC) sensitivity of X70 steel increased with the increasing pressure, whereas, as the pressure increase up to 3 MPa, the SCC sensitivity decreased. The SCC sensitivity of X70 steel in the simulated sea water depended on the pitting degree on the steel surface, but not necessarily have a positive correlation to the hydrostatic pressure. With the increase of hydrostatic pressure, the anodic dissolution of X70 steel surface was promoted, and more hydrogen atoms were promoted to enter the steel. The SCC process of X70 steel in the simulated sea water could be ascribed to a mixed mechanism controlled by both anodic dissolution and hydrogen induced cracking.

Key words:  X70 steel      marine environment      hydrostatic pressure      electrochemical behavior      stress corrosion cracking     
Received:  07 April 2020     
ZTFLH:  TG147  
Fund: Chunhui Program of the Ministry of Education of China and the Key Project of Education Department of Liaoning Province of China(L2017LZD004)
Corresponding Authors:  CHEN Xu     E-mail:  cx0402@sina.com
About author:  CHEN Xu, E-mail: cx0402@sina.com

Cite this article: 

LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 307-317.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.061     OR     https://www.jcscp.org/EN/Y2021/V41/I3/307

Fig.1  Microstructure of X70 steel
Fig.2  Schematic diagram of sample used in slow strain rate tensile test
Fig.3  Corrosion rate of X70 steel in 3.5%NaCl solution under different hydrostatic pressures
Fig.4  Corrosion morphologies of X70 steel in 3.5%NaCl solution under 0 MPa (a), 1 MPa (b), 2 MPa (c) and 3 MPa (d) hydrostatic pressures
Fig.5  XRD patterns of X70 steel after 168 h corrosion in 3.5%NaCl solution under different hydrostatic pressures
Fig.6  SEM images (a1~d1) and EDS results (a2~d2) of X70 steel after 168 h corrosion in 3.5%NaCl solution under various hydrostatic pressures of 0 MPa (a), 1 MPa (b), 2 MPa (c) and 3 MPa (d)
Fig.7  SEM images of X70 steel after immersion in 3.5%NaCl solution under 0 MPa (a), 1 MPa (b), 2 MPa (c), 3 MPa (d) hydrostatic pressures and then removing the corrosion products
Fig.8  Polarization curves of X70 steel in 3.5% NaCl solution under different hydrostatic pressures
P / MPaIcorr / μA/cm2Ecorr / Vba / V·dec-1bc / V·dec-1
02.45-0.8040.070.09
12.63-0.8300.100.07
23.80-0.8070.120.06
32.57-0.7960.070.07
Table 1  Fitting parameters of polarization curves of X70 steel under various hydrostatic pressures
Fig.9  Nyqusit (a), phase angle (b) and |Z|-f (c) diagrams of X70 steel in 3.5%NaCl solution under different hydrostatic pressures
Fig.10  Equivalent circuit diagrams of EIS for X70 steel under the conditions of 0, 1 MPa (a) and 2, 3 MPa (b)
P / MPaRs / Ω·cm2Qf / F·cm-2n-QfRf / Ω·cm2Qdl / F·cm-2n-QdlRct / Ω·cm2L / H·cm-2RL / Ω·cm2
09.722.04×10-20.370.776.57×10-516.242.23×10-2---
19.692.61×10-20.320.905.39×10-516.102.31×10-2---
27.996.55×10-41.000.018.34×10-20.824.401.41×10-21.45
39.273.45×10-41.000.121.20×10-20.885.558.85×10-31.93
Table 2  Fitting results of EIS of X70 steel under different hydrostatic pressures
Fig.11  SSRT curves of X70 steel under different hydrostatic pressures
Fig.12  Elongation (δ%) and reduction of area (ψ%) of X70 steel under different hydrostatic pressures
Fig.13  Fracture morphologies of X70 steel under 0 MPa (a), 1 MPa (b), 2 MPa (c) and 3 MPa (d) hydrostatic pressures
Fig.14  Side fracture morphologies of X70 steel under 0 MPa (a), 1 MPa (b), 2 MPa (c) and 3 MPa (d) hydrostatic pressures
1 Liu Z Y, Wan H X, Li C, et al. Comparative study on corrosion of X65 pipeline steel welded joint in simulated shallow and deep sea environment [J]. J. Chin. Soc Corros. Prot., 2014, 34: 321
刘智勇, 万红霞, 李禅等. X65钢焊接接头在模拟浅表海水和深海环境中的腐蚀行为对比 [J]. 中国腐蚀与防护学报, 2014, 34: 321
2 Wang G F, Chen X, Gao F J, et al. Corrosion mechanism of X70 pipeline steel in different Cl- concentration [J]. Hot Work. Technol., 2015, 44(22): 34
王冠夫, 陈旭, 高凤姣等. X70管线钢在不同浓度Cl-溶液中腐蚀机理研究 [J]. 热加工工艺, 2015, 44(22): 34
3 Li H L. Developing pulse and prospect of oil and gas transmission pipe [J]. Welded Pipe Tube, 2004, 27(6): 1
李鹤林. 油气输送钢管的发展动向与展望 [J]. 焊管, 2004, 27(6): 1
4 Chen G M. Inspection and repair optimization of offshore structure for cracks [J]. J. Univ. Petroleum, China, 2000, 24(5): 73
陈国明. 海洋结构裂纹检测与维修优化 [J]. 中国石油大学学报 (自然科学版), 2000, 24(5): 73
5 Hou J, Guo W M, Deng C L. Influences of deep sea environmental factors on corrosion behavior of carbon steel [J]. Equip. Environ. Eng., 2008, 5(6): 82
侯健, 郭为民, 邓春龙. 深海环境因素对碳钢腐蚀行为的影响 [J]. 装备环境工程, 2008, 5(6): 82
6 Cao P, Zhou T T, Bai X Q, et al. Research progress on corrosion and protection in deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 12
曹攀, 周婷婷, 白秀琴等. 深海环境中的材料腐蚀与防护研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 12
7 Yang Z X, Kan B, Li J X, et al. Hydrostatic pressure effects on corrosion behavior of X70 pipeline steel in a simulated deep-sea environment [J]. J. Electroanal. Chem., 2018, 822: 123
8 Bhosle N B, Wagh A B. The effect of organic matter associated with the corrosion products on the corrosion of mild steel in the Arabian Sea [J]. Corros. Sci., 1992, 33: 647
9 Al-Fozan S A, Malik A U. Effect of seawater level on corrosion behavior of different alloys [J]. Desalination, 2008, 228: 61
10 Beccaria A M, Poggi G, Arfelli M, et al. The effect of salt concentration on nickel corrosion behaviour in slightly alkaline solutions at different hydrostatic pressures [J]. Corros. Sci., 1993, 34: 989
11 Beccaria A M, Poggi G, Castello G. influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water [J]. Br. Corros. J., 1995, 30: 283
12 Hamdy A S, Beccaria A M, Temtchenko T. Corrosion protection of AA6061 T6 by fluoropolymer coatings in NaCl solution [J]. Surf. Coat. Technol., 2002, 155: 176
13 Beccaria A M, Poggi G. Influence of hydrostatic pressure on pitting of aluminium in sea water [J]. Br. Corros. J., 1985, 20: 183
14 Beccaria A M, Fiordiponti P, Mattogno G. The effect of hydrostatic pressure on the corrosion of nickel in slightly alkaline solutions containing Cl- ions [J]. Corros. Sci., 1989, 29: 403
15 Yang Y G, Zhang T, Shao Y W, et al. Effect of hydrostatic pressure on the Corrosion behaviour of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2010, 52: 2697
16 Yang Y G, Zhang T, Shao Y W, et al. New understanding of the effect of hydrostatic pressure on the corrosion of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2013, 73: 250
17 Liu B, Zhang J, Zhang T, et al. Influence of deep-sea environment on corrosion behavior of pure nickel-Ⅱ-stochastic analysis approaches to pitting of pure nickel under hydrostatic pressure [J]. Corros. Sci. Prot. Technol., 2010, 22: 85
刘斌, 张杰, 张涛等. 深海环境对纯镍腐蚀行为的影响Ⅱ-利用随机分析方法研究纯镍在静水压力下的点蚀行为 [J]. 腐蚀科学与防护技术, 2010, 22: 85
18 Yang Z X, Kan B, Li J X, et al. Pitting initiation and propagation of X70 pipeline steel exposed to chloride-containing environments [J]. Materials, 2017, 10: 1076
19 Sun H J, Liu L, Li Y, et al. Effect of hydrostatic pressure on the corrosion behavior of a low alloy steel [J]. J. Electrochem. Soc., 2013, 160: C89
20 Sun H J, Liu L, Li Y, et al. The performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated deep water environment [J]. Corros. Sci., 2013, 77: 77
21 Ding K K, Fan L, Guo W M, et al. Deep sea corrosion behavior of typical metal materials and research hotspot discussion [J]. Equip. Environ. Eng., 2019, 16(1): 117
丁康康, 范林, 郭为民等. 典型金属材料深海腐蚀行为规律与研究热点探讨 [J]. 装备环境工程, 2019, 16(1): 117
22 Du C W, Li X G, Liu Z Y, et al. Stress corrosion cracking susceptibility of X70 steel in simulation deep sea environment [A]. Conference Record of 2014 Marine Materials Corrosion and Protection Conference [C]. Beijing, 2014
杜翠薇, 李晓刚, 刘智勇等. X70钢在模拟深海环境中的应力腐蚀开裂敏感性研究 [A]. 海洋材料腐蚀与防护大会 [C]. 北京, 2014
23 Zhang T, Yang Y G, Shao Y W, et al. A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe–20Cr alloy [J]. Electrochim. Acta, 2009, 54: 3915
24 Luo Y Y. CNOOC: completed the independent laying of the longest submarine pipeline in China [J]. Petrol. Knowl, 2018, (2): 22
骆秧秧. 中国海油: 完成我国最长海底管线自主铺设 [J]. 石油知识, 2018, (2): 22
25 Sun H J, Liu L, Li Y, et al. Corrosion behavior of a high strength low alloy steel under hydrostatic pressure in deep ocean [A]. Conference Record of the 6th China Corrosion Conference Yinchuan [C]. Yinchuan, 2011
孙海静, 刘莉, 李瑛等. 低合金高强度钢在深海静水压力环境中腐蚀行为的研究 [A]. 第六届全国腐蚀大会论文集 [C]. 银川, 2011
26 Li J, Chen X, Li B W, et al. Effect of CO2 partial pressure on corrosion of 20 steel in oil-gas gathering and transporting [J]. J. Mater. Sci. Eng., 2018, 36: 589
李建, 陈旭, 李博文等. 20钢在集输系统中不同CO2分压下的腐蚀行为 [J]. 材料科学与工程学报, 2018, 36: 589
27 Liu Z Y, Jia J H, Du C W. Corrosion behavior of X80 and X52 steels in simulated seawater environments [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 327
刘智勇, 贾静焕, 杜翠薇. X80和X52管线钢在模拟海水环境中的腐蚀行为与规律 [J]. 中国腐蚀与防护学报, 2014, 34: 327
28 Yao X F, Xie F Q, Wu X Q, et al. Effects of Cl- concentration on stress corrosion cracking behaviors of super 13Cr tubing steels [J]. Mater. Rev., 2012, 26(18): 28
姚小飞, 谢发勤, 吴向清等. Cl-浓度对超级13Cr油管钢应力腐蚀开裂行为的影响 [J]. 材料导报, 2012, 26(18): 28
29 Song B Q, Chen X, Ma G Y, et al. Effect of SRB on SCC behaviour of X70 pipeline steel and its weld joint in near-neutral pH solution [J]. Trans. Mater. Heat Treat., 2016, 37(4): 122
宋博强, 陈旭, 马贵阳等. SRB对X70钢及其焊缝在近中性pH溶液中SCC行为的影响 [J]. 材料热处理学报, 2016, 37(4): 122
30 Chen X, Wu M, He C, et al. Effect of applied potential on SCC of X80 pipeline steel and its weld joint in Ku'erle soil simulated solution [J]. Acta Metall. Sin., 2010, 46: 951
陈旭, 吴明, 何川等. 外加电位对X80钢及其焊缝在库尔勒土壤模拟溶液中SCC行为的影响 [J]. 金属学报, 2010, 46: 951
31 Rhouma A B, Sidhom H, Braham C, et al. Effects of surface preparation on pitting resistance, residual stress, and stress corrosion cracking in austenitic stainless steels [J]. J. Mater. Eng. Perform., 2001, 10: 507
32 Zhu M, Du C W, Li X G, et al. Effect of AC on stress corrosion cracking behavior and mechanism of X80 pipeline steel in carbonate/bicarbonate solution [J]. Corros. Sci., 2014, 87: 224
33 Wang H T, Han E-H. Simulation of metastable corrosion pit development under mechanical stress [J]. Electrochim. Acta, 2013, 90: 128
34 Yang Z X. Study of corrosion and stress corrosion cracking of X70 pipeline steel in simulated deep-sea environment [D]. Beijing: University of Beijing Science and Technology China, 2017
杨子旋. X70钢在模拟深海环境中腐蚀及应力腐蚀行为研究[D]. 北京: 北京科技大学, 2017
35 Moayed M H, Newman R C. The relationship between pit chemistry and pit geometry near the critical pitting temperature [J]. J. Electrochem. Soc., 2006, 153: B330
36 Yang Z X, Kan B, Li J X, et al. A statistical study on the effect of hydrostatic pressure on metastable pitting corrosion of X70 pipeline steel [J]. Materials, 2017, 10: 1307
37 Xiong X L, Tao X, Zhou Q J, et al. Hydrostatic pressure effects on hydrogen permeation in A514 steel during galvanostatic hydrogen charging [J]. Corros. Sci., 2016, 112: 86
[1] ZHANG Teng, LIU Jing, HUANG Feng, HU Qian, GE Fangyu. Effect of Alternating Stress Frequency on Corrosion Electrochemical Behavior of E690 Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[2] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[4] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[5] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[6] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[7] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[8] CAO Jingyi, WANG Zhiqiao, LI Liang, MENG Fandi, LIU Li, WANG Fuhui. Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[9] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[10] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[11] Xin LI,Xu CHEN,Wuqi SONG,Jiaxing YANG,Ming WU. Effect of pH Value on Microbial Corrosion Behavior of X70 Steel in a Sea Mud Extract Simulated Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[12] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[13] Yukun WANG, Jing LIU, Qian HU, Feng HUANG. Effect of S2- on Corrosion Behavior of A710 Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(3): 233-240.
[14] Sai YE, Moradi Masoumeh, Zhenlun SONG, Fangqin HU, Zhaohui SHUN, Jianping LONG. Inhibition Effect of Pseudoalteromonas Piscicida on Corrosion of Q235 Carbon Steel in Simulated Flowing Seawater[J]. 中国腐蚀与防护学报, 2018, 38(2): 174-182.
[15] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
No Suggested Reading articles found!