Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (5): 471-475    DOI: 10.11902/1005.4537.2015.188
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Resistance of Two Thermal Sprayed Zn-Al Alloy Coatings in Seawater at Low Temperatures
Jiali SUI1,2,Xiangbo LI2(),Zhifeng LIN2,Tianrong ZHAN1
1. College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
2. State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266101, China
Download:  HTML  PDF(2219KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zn-Al coatings with different Zn contents were prepared by thermal spray. The corrosion resistance of Zn-Al alloy coatings in seawater in temperature range of 0~25 ℃ was evaluated by scanning electron microscope (SEM), potentiodynamic polarization test and electrochemical impedance spectroscope. It was found that the surface of Al-85%Zn coating got darken than that of Al-2%Zn coating and lost metallic luster. As the temperature decreases, the corrosion potential of the coating shifted positively, while its corrosion current decreased and impedance (Rc) increased, leading to the increase in corrosion resistance of coating. In general, the corrosion resistance of Al-2%Zn coating is better than that of Al-85%Zn coating in low temperature seawater, and the stability of Al-2%Zn coating is also stronger.

Key words:  thermal spraying      Zn-Al alloy coating      potentiodynamic polarization      electrochemical impedance spectroscopy      temperature     

Cite this article: 

Jiali SUI,Xiangbo LI,Zhifeng LIN,Tianrong ZHAN. Corrosion Resistance of Two Thermal Sprayed Zn-Al Alloy Coatings in Seawater at Low Temperatures. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 471-475.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.188     OR     https://www.jcscp.org/EN/Y2016/V36/I5/471

Fig.1  SEM images of the surfaces of Al-2%Zn coating (a) and Al-85%Zn coating (b)
Fig.2  SEM images of the cross sections of Al-2%Zn coating (a) and Al-85%Zn coating (b)
Fig.3  Potentiodynamic polarization curves of Al-2%Zn coating (a) and Al-85%Zn coating (b) in seawater at different temperatures
Fig.4  Variations of Ecorr (a) and Icorr (b) of two Zn-Al alloy coatings in seawater with temperature
Fig.5  Nyquist plots of Al-2%Zn (a) and Al-85%Zn (b) coatings in seawater at different temperatures
Fig.6  Equivalent circuits of EIS of Al-2%Zn (a, b) and Al-85%Zn (c, d) coatings at initial stage (a, c) and last stage (b, d)
Fig.7  Variations of Rc of two Zn-Al coatings with temperature
[1] Hua S C, Wang G H, Wang L Y, et al.Advances in thermal spray technology[J]. Heat Treat. Met., 2008, 33(5): 82
[1] (华绍春, 王汉功, 汪刘应等. 热喷涂技术的研究进展[J]. 金属热处理, 2008, 33(5): 82)
[2] Chen X D, Han W Z.Surface Coating Technology [M]. Beijing: China Machine Press, 1994
[2] (陈学定, 韩文正. 表面喷涂技术 [M]. 北京: 机械工业出版社, 1994)
[3] Shi C X, Zhang P.Development trends of surface engineering in the 21st century[J]. China Surf. Eng., 2001, 14(1): 2
[3] (师昌绪, 张平. 21世纪表面工程的发展趋势[J]. 中国表面工程,2001, 14(1): 2)
[4] Zhao L D.New developments in thermal spray technology[J]. China Surf. Eng., 2002, 15(3): 5
[4] (赵力东. 热喷涂技术的新发展[J]. 中国表面工程, 2002, 15(3): 5)
[5] Xu B S, Zhang W, Liang X B.The application and development of thermal spray materials[J]. Adv. Mater. Ind., 2001, 40(12): 3
[5] (徐滨士, 张伟, 梁秀兵. 热喷涂材料的应用与发展[J]. 新材料产业, 2001, 40(12): 3)
[6] Thorpe R.Thermal spray technology[J]. Adv. Mater. Process., 2000,158(2): 45
[7] Herman H.Thermal spray: Current status and future trends[J]. MRSBull., 2000, 25(7): 17
[8] Li N, Xu L K, Wang H R, et al.Effects of aluminum powders on the sintered Zn-Al coatings[J]. J. Chin. Soc. Corros. Prot., 2009, 29: 88
[8] (李宁, 许立坤, 王洪仁等. 热烧结锌铝涂层中Al粉的作用[J]. 中国腐蚀与防护学报, 2009, 29: 88)
[9] Zhao F, Xu L K, Li X B.Research on influence of Aluminum content on the microstructure and corrosion resistance of Zn-Alcoatings[J]. Develop. Appl. Mater., 2012, 27(3): 46
[9] (赵芳, 许立坤, 李相波. 铝粉含量对锌铝涂层微观形貌和耐蚀性的影响[J]. 材料开发与应用, 2012, 27(3): 46)
[10] Zhang X G.Corrosion of zinc and zinc alloys[J]. Corros. Prot., 2006, 27: 41
[10] (章小鸽. 锌和锌合金的腐蚀[J]. 腐蚀与防护, 2006, 27: 41)
[11] Liu Y, Zhu Z X, Ma J, et al.Study on self-sealing mechanism of Zn and Zn-Al coating based on electrochemical impedance spectroscopy[J]. China Surf. Eng., 2005, 18(2): 27
[11] (刘燕, 朱子新, 马洁等. 基于电化学阻抗谱的Zn及Zn-Al涂层的自封闭机理研究[J]. 中国表面工程, 2005, 18(2): 27)
[1] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[2] WANG Lei, DONG Junhua, HAN Da, LIANG Jiankun, LI Quan, KE Wei. Phenonmenon of Cu Segregation in Cu-containing steel During Soaking at 1150 ℃[J]. 中国腐蚀与防护学报, 2020, 40(6): 545-552.
[3] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[4] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[5] WANG Haiwei, CHANG Sen, LUAN Xin'gang, SONG Xuemei, WANG Zhen, LI Yanzhang, CHEN Jianli, ZHANG Jirong, HAN Ming, QIU Dangui. Preparation and Properties of Ceramics Composed of Nano-Al2O3 and Polysiloxane-polyborosilicate-TiB2 Modified Polysilborazane as High Temperature Adhesive for SiC Based Ceramics[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[6] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[7] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[8] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[9] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[10] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[11] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[12] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[13] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[14] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[15] Junjie XIA,Hongzhi NIU,Min LIU,Huazhen CAO,Guoqu ZHENG,Liankui WU. Enhancement of High Temperature Oxidation Resistance of Ti48Al5Nb Alloy via Anodic Anodization in NH4F Containing Ethylene Glycol[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
No Suggested Reading articles found!