Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (5): 447-454    DOI: 10.11902/1005.4537.2014.226
Current Issue | Archive | Adv Search |
Influence of Corrosion Inhibitor Carriered Nano-SiO2 on Corrosion Resistance of Epoxy Coating
Wei SUN1,Guilai YIN2,Fuchun LIU1(),Nan TANG2,En-Hou HAN1,Junbiao WAN2,Wei KE1,Jingwei DENG2
1. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. State Grid Jiangxi Electric Power Research Institute, Nanchang 330096, China
Download:  HTML  PDF(3065KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The 8-hydroxyquinoline (8Q), as a sustained-release corrosion inhibitor was deposited onto nano-particles of mesoporous-silica to prepare 8-hydroxyquinoline-silica (8Q-SiO2) powder. Then the powder was used as pigment to modify epoxy resin to prepare 8Q-SiO2-epoxy resin coating. The prepared 8Q-SiO2 was characterized by means of infrared spectrum and ultraviolet absorption spectrum. The corrosion performance of the 8Q-SiO2-epoxy resin coating was examined by salt spray test and electrochemical impedance measurement. The results revealed that the 8Q can enhance the corrosion resistance of epoxy coating, and among others the epoxy coating with 5% (mass fraction) 8Q-SiO2 exhibits the highest corrosion resistance, which may be ascribed to that the 8Q may slowly release from the mesoscopic channels within SiO2 into the epoxy coating and then arrive at the interface coating/substrate to provide corrosion inhibition for the substrate.

Key words:  8-hydroxy quinoline      nano-silica      epoxy coating      electric transmission and transformation equipment      anticorrosive material     
ZTFLH:     
Fund:  

Cite this article: 

Wei SUN, Guilai YIN, Fuchun LIU, Nan TANG, En-Hou HAN, Junbiao WAN, Wei KE, Jingwei DENG. Influence of Corrosion Inhibitor Carriered Nano-SiO2 on Corrosion Resistance of Epoxy Coating. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 447-454.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.226     OR     https://www.jcscp.org/EN/Y2015/V35/I5/447

Fig.1  IR diagrams of SiO2 (a), 8Q (b) and 8Q-SiO2 (c)
Fig.2  TG curves of SiO2 and 8Q-SiO2
Fig.3  N2 adsorption-desorption isotherms of SiO2 (a) and 8Q-SiO2 (b)
Sample Average pore diameter / nm Surface area m2g-1 Pore volume cm3g-1
SiO2 13.724 146.209 0.502
8Q-SiO2 12.707 142.436 0.452
Table 1  Physical properties of SiO2 and 8Q-SiO2
Fig.4  Ultraviolet absorption curves of 8Q (a) and 8Q-SiO2 (b)
Sample 1 2 3 4 5 Mean
Z0 2.3 2.3 2.2 2.3 2.4 2.3
Z1 3.4 3.3 3.4 3.5 3.4 3.4
Z3 3.8 3.7 3.8 3.6 3.7 3.7
Z5 3.9 4.2 4.2 4.3 4.4 4.2
Table 2  Pull-off test results of adhesion of Z0, Z1, Z3 and Z5 coatings
Fig.5  Surface morphologies of Z0 (a), Z1 (b), Z3 (c) and Z5 (d) coated samples after salt spray tests for 2000 h
Sample Small bubbles area / % Mid-bubbles area / % Big bubbles area / % Maximum width of corrosion expansion / mm
Z0 0 0 15 15
Z1 0 13 0 11
Z3 4 9 0 8.5
Z5 7 2 0 5
Table 3  Corrosion situation of coated samples after salt spray tests for 2000 h
Fig.6  SEM images of the scribe sections of Z0 (a), Z1 (b), Z3 (c) and Z5 (d) coated samples after 2000 h salt spray tests
Fig.7  EDX results of the scribe sections of Z0 (a) and Z5 (b) coated samples after salt spray tests
Fig.8  Impedance module (a, c, e, g) and phase angle (b, d, f, h) plots for Z0 (a, b), Z1 (c, d), Z3 (e, f) and Z5 (g, h) coated samples after immersed for different time
Fig.9  Equivalent circuits with one time constant (a) and two-time constant (b) for the intact coating
Fig.10  Changes of coating resistance with immersion time
Fig.11  Changes of water absorption of the coatings with immersion time
Fig.12  Releasing mechanism of silica loaded with 8Q
[1] Kartsonakis I, Daniilidis I, Kordas G. Encapsulation of the corrosion inhibitor 8-Hydroxy-quinoline into ceria nanocontainers[J]. J.Sol-Gel Sci. Technol., 2008, 48: 24
[2] Chen T, Jia J. An intelligent anticorrosion coating based on pH-responsive supramolecular nanocontainers[J]. Nanotechnology, 2012,23: 505705
[3] Baghdachi J, Provder T. Smart Coatings III [M]. Washington, DC: ACS Symposium Series, American Chemical Society, 2010
[4] A?ssa B, Therriault D, Haddad E, et al. Self-healing materials systems, overview of major approaches and recent developed technologies[J]. Adv. Mater. Sci. Eng., 2012, 2012: 854203
[5] Swapan K G. Self-healing Materials Fundamentals, Design Strategies, and Applications [M]. New Delhi: Wiley-Vch. Verlag GmbH & Co. KGaA, 2009
[6] Voevodin N N, Grebasch N T, Soto W S, et al. Potentiodynamic evaluation of solgel coatings with inorganic inhibitors[J]. Surf. Coat. Technol., 2001, 140: 24
[7] Lamaka S V, Montemor M F, Galio A F, et al. Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy[J]. Electrochim. Acta, 2008, 53: 4773
[8] Heming W, Robert A. Encapsulated cerium nitrate inhibitors to provide high-performance anti-corrosion solgel coatings on mild steel[J]. Corros. Sci., 2008, 50: 1142
[9] Khramov A N, Voevodin N N, Balbyshev V N, et al. Hybrid organoceramic corrosion protection coatings with encapsulated organic corrosion inhibitors[J]. Thin Solid Films, 2004, 447/448: 549
[10] Yan J, Buckley A M, Greenblatt M. The preparation and characterization of silica gels doped with copper complexes[J]. J. Non-Cryst. Solids, 1995, 180: 180
[11] Cai W P, Tan M, Wang G Z, et al. Preparation of silver / silica mesoporous composite[J]. Chin. Sci. Bull., 1997, 42(2): 150 (蔡伟平, 谭铭, 汪国忠等. 银/二氧化硅介孔复合体的制备[J]. 科学通报, 1997, 42(2): 150)
[12] Bruni S, Cariati P, Casu M, et al. IR and NMR study of nanoparticle support interaction in a Fe2O3-SiO2 nanocomposite prepared by a solgel method[J]. Nanostruct. Mater., 1999, 11(5): 573
[13] Zuo M X, Huang Z J, Zhang Y M. Modification of nano silica in dispersion of coatings[J]. New Chem. Mater., 2000, 11(28): 22 (左美祥, 黄志杰, 张玉敏. 纳米SiOx在涂料中的应用[J]. 现代涂料与涂装, 2000, 11(28): 22
[14] Saremi M, Yeganeh M. Application of mesoporous silica nanocontainers as smart host of corrosion inhibitor in polypyrrole coatings[J]. Corros. Sci., 2014, 86: 159
[15] Montemor M F, Snihirova D V, Taryba M G, et al. Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors[J]. Electrochim. Acta, 2012, 60: 31
[16] Wang J C, Yang K, Zheng X Y. Study on the organic modification of montmorillonite and its structure and properties[J]. Chem. Miner. Process, 2010, (7): 11 (王锦成, 杨科, 郑晓昱. 蒙脱土的有机化改性及其结构与性能研究[J]. 化工矿物与加工, 2010, (7): 11)
[17] Brasher M D, Kingsbury A H. Electrical measurements in the study of immersed paint coatings on metal. I. Comparison between capacitance and gravimetric methods of estimating water-uptake[J]. J. Appl. Chem., 1954, 4: 62
[1] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[2] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[3] WANG Guirong,ZHENG Hongpeng,CAI Huayang,SHAO Yawei,WANG Yanqiu,MENG Guozhe,LIU Bin. Failure Process of Epoxy Coating Subjected Test of Alternating Immersion in Artificial Seawater and Dry in Air[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[4] Guirong WANG,Yawei SHAO,Yanqiu WANG,Guozhe MENG,Bin LIU. Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[5] Liang CHANG, Chao SHI, Yawei SHAO, Yanqiu WANG, Bin LIU, Guozhe MENG. Effect of Phytic Acid Conversion Film on Corrosion Resistance of Epoxy Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[6] Bei QIAN, Chengbao LIU, Zuwei SONG, Junfeng REN. Anticorrosion Performance of Epoxy Coating Modified with Nanocontainers[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[7] Yinze ZUO, Liang CHEN, Qing FENG, Yanmin GAO. Effect of Self-assembly Film of PFOA/Silane Coupling Agent on Properties of Epoxy Rust-tolerant Coating Applied on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 554-560.
[8] Hongtao ZHAO, Weizhong LU, Jing LI, Yugui ZHENG. Degradation Behavior of Solvent-free Epoxy Coatings in Simulated Flowing Sea Water with Sand by Different Flow Rates[J]. 中国腐蚀与防护学报, 2017, 37(4): 329-340.
[9] Hongyang GAO,Wei WANG,Likun XU,Li MA,Zhangji YE,Xiangbo LI. Degradation Behavior of a Modified Epoxy Coating in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.
[10] Juan ZHANG,Ziqiang LIU,Tao FENG,Shifeng WEN,Ruiqing CHEN. Effect of Carbon Nanotube on Properties of Epoxy Coating[J]. 中国腐蚀与防护学报, 2017, 37(3): 254-260.
[11] Hongtao ZHAO,Weizhong LU,Jing LI,Yugui ZHENG. Electrochemical Behavior of Solvent-free Epoxy Coating during Erosion in Simulated Flowing Sea Water[J]. 中国腐蚀与防护学报, 2016, 36(4): 295-305.
[12] Shan ZHANG,Lina ZHOU,Lu JIAN,Xu WANG. Preparation and Corrosion Resistance of PANI/TiO2/Epoxy Coatings[J]. 中国腐蚀与防护学报, 2016, 36(1): 59-66.
[13] Bing ZHOU, Nan TANG, Yingjun ZHANG, Liang MAO, Yanqiu WANG, Yawei SHAO, Guozhe MENG. A High Adhesive Epoxy Varnish Coating on Galvanized Steel[J]. 中国腐蚀与防护学报, 2015, 35(5): 455-460.
[14] LIU Ying, LIU Li, LI Ying, WANG Fuhui. EFFECT OF HIGH HYDROSTATIC PRESSURE ON DIFFUSING BEHAVIOR OF WATER THROUGH EPOXY COATING[J]. 中国腐蚀与防护学报, 2012, 32(3): 203-209.
[15] SHI Qiumei, SHAO Yawei, ZHANG Tao, MENG Guozhe, CHEN Qihao. PROTECTION DIMENSION OF SCRATCHED ZINC PHOSPHATE/EPOXY COATING[J]. 中国腐蚀与防护学报, 2011, 31(5): 389-394.
No Suggested Reading articles found!