Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (3): 277-282    DOI: 10.11902/1005.4537.2013.118
Current Issue | Archive | Adv Search |
Preparation and Corrosion Resistance of Bionic Coatings on Pure Titanium by Microarc Oxidation and Alkali-heat Treatment
CAI Siqi1, ZHAO Xuan2, LUO Qiang2, LI Xinwei2, CAI Qizhou2()
1. School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2. School of Materials Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Download:  HTML  PDF(3534KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

采用微弧氧化-碱热处理在纯Ti表面制备了含有羟基磷灰石 (HA) 的仿生陶瓷膜。利用SEM,XRD和电化学工作站等手段研究了膜层的形貌、物相及其耐蚀性。结果表明:在乙酸钙-磷酸二氢钙电解液体系中微弧氧化 (MAO),纯Ti表面形成一层含Ca和P的TiO2多孔陶瓷膜。经水热处理后,膜层表面的孔洞变小、致密性增加,膜层中还出现了鳞状、层片状以及针棒状的HA。在Hank's模拟体液中,MAO膜和微弧氧化-碱热处理 (MAOAH) 膜均表现出较好的耐蚀性。MAO膜经模拟体液腐蚀后,形成了缺钙型HA (Ca8.86(PO4)6(H2O2)2) 和CaTiO3;而模拟体液中的阴离子与MAOAH膜层的氧化物作用使膜层孔洞直径和深度增加。

Key words:  pure titanium      micro-arc oxidation      alkali-heat treatment      hydroxyapatite      corrosion resistance     
Received:  17 August 2013     
ZTFLH:  TG174.2+2  

Cite this article: 

CAI Siqi, ZHAO Xuan, LUO Qiang, LI Xinwei, CAI Qizhou. Preparation and Corrosion Resistance of Bionic Coatings on Pure Titanium by Microarc Oxidation and Alkali-heat Treatment. Journal of Chinese Society for Corrosion and protection, 2014, 34(3): 277-282.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.118     OR     https://www.jcscp.org/EN/Y2014/V34/I3/277

Fig.1  

两种膜层的表面形貌

Coating O Na P Ca Ti
MAO 46.63 2.51 7.74 15.09 28.03
MAOAH 50.77 --- 8.36 14.09 26.78
Table 1  Elemental compositions of MAO and MAOAH coatings (atomic fraction / %)
Fig.2  

MAO 膜和 MAOAH膜的XRD谱

Coating Anatase Rutile
MAO 88.68 11.32
MAOAH 72.41 27.59
Table 2  Relative content of anatase and rutile in MAO and MAOAH coatings (relative content / %)
Fig.3  

3组试样的自腐蚀电位曲线

Fig.4  

模拟体液中纯Ti, MAO膜和MAOAH膜的极化曲线 (纵坐标单位)

Fig.5  

3组试样腐蚀后的形貌

Fig.6  

3组试样腐蚀后表面的XRD谱

[1] Zhu K P, Zhu J W, Qu H L. Development and application of biomedical Ti alloys abroad[J]. Rare Met. Mater. Eng., 2012, 41(11): 2058-2063
(朱康平, 祝建雯, 曲恒磊. 国外生物医用钛合金的发展现状[J]. 稀有金属材料与工程, 2012, 41(11): 2058-2063)
[2] Geetha M, Singh A K, Asokamani R, et al. Ti based biaomaterials, the ultimate choice for orthopaedic implants-a review[J]. Prog. Mater. Sci., 2009, 54: 397-425
[3] Nasab M B, Hassan M R. Metallic biomaterials of knee and hip-a review[J]. Trends Biomater. Artif. Organs, 2010, 24: 69-82
[4] Guo L, Liang C H, Sui H Y. Corrosion behavior of commercially pure Ti and Ti6Al4V alloy in artificial body fluid[J]. Chin. J. Nonferrous Met., 2001, 2(11): 107-110
(郭亮, 梁成浩, 隋洪艳. 模拟体液中纯钛及Ti6Al4V合金的腐蚀行为[J]. 中国有色金属学报, 2001, 2(11): 107-110)
[5] Mohsen Q, Fadl-Allah S A. Improved in corrosion resistance of commercial pure titanium for the enhancement of its biocompatibility[J]. Mater. Corros., 2010, 61: 1-10
[6] Liu J X, Yang D Z, Wang W Q, et al. Application of surface modification in biomedical materials research[J]. Chin. J. Mater. Res., 2000, 14(3): 225-233
(刘敬肖, 扬大智, 王伟强等. 表面改性在生物医用材料研究中的应用[J]. 材料研究学报, 2000, 14(3): 225-233)
[7] Hu R, Lin C J, Shi H Y. A novel ordered nano hydroxyapatite coating electrochemically deposited on titanium substrate[J]. J. Biomed. Mater. Res., 2006, 80(3)A: 687-692
[8] Cao H L, Liu X Y, Ding C X. Progress in surface modification of titanium alloys for biomedical applications[J]. Mater. China, 2009, 28(9/10): 9-16
(曹辉亮, 刘宣勇, 丁传贤. 医用钛合金表面改性的研究进展[J]. 中国材料进展, 2009, 28(9/10): 9-16)
[9] Han Y, Hong S H, Xu K W. Structure and in vitro bioactivity of titania-based films by micro-arc oxidation[J]. Surf. Coat. Technol., 2003, 168: 249-258
[10] Mao L T, Xue R, An L Q. Quantitative analysis on SEM image of microstructure with MATLAB[J]. J. Chin. Electron Microsc. Soc., 2004, 23(5) : 579-583
(毛灵涛, 薛茹, 安里千. MATLAB在微观结构SEM图像定量分析中的应用[J]. 电子显微学报, 2004, 23(5): 579-583)
[11] Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity?[J]. Biomaterials, 2006, 27(15): 2907-2915
[12] Song W H, Jun Y K, Han Y. Biomimetic apatite coatings on micro-arc oxidized titania[J]. Biomaterials, 2004, 25: 3341-3349
[13] Yerokhin A L, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering[J]. Surf. Coat. Technol., 1999, 122(2/3): 73-93
[14] Wei D Q, Zhou Y, Wang Y M, et al. Characteristic of microarc oxidized coatings on titanium alloy formed in electrolytes containing chelate complex and nano-HA[J]. Appl. Surf. Sci., 2007, 253: 5045-5050
[15] Wei D Q, Zhou Y, Wang Y M, et al. Chemical etching of micro-plasma of micro-plasma oxidized titania film on titanium alloy and apatite deposited on the surface of modified titania film in vitro[J]. Thin Solid Films, 2008, 516: 1818-1825
[16] Huang C H, Wang Q L, Shi X L. Electrochemical corrosion behaviors of micro-arc oxidation titanium alloy[J]. Rare Met. Mater. Eng., 2012, 41(7): 1161-1165
(黄传辉, 王庆良, 史兴岭. 微弧氧化钛合金的电化学腐蚀行为[J]. 稀有金属材料与工程, 2012, 41(7): 1161-1165)
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[4] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[5] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[6] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[7] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[8] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[9] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[10] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[11] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[12] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[13] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[14] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[15] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
No Suggested Reading articles found!