Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2012, Vol. 32 Issue (5): 407-411    DOI:
Current Issue | Archive | Adv Search |
MECHANISM OF PITTING CORROSION ACTIVATION AND PASSIVATION OF Al-Zn-Sn-Ga ALLOY
LI Junfeng, WEN Jiuba, HE Junguang, MA Jingling, LI Gaolin
School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003
Download:  PDF(1490KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The micro developed and passivated process of corrosion pits of Al-Zn-Sn-Ga alloy were investigated by SEM, and the function relationship between pH value and pits depth in corrosion pits was also calculated in order to explain the expanded and passivated mechanism of pitting corrosion under the condition of neutral NaCl solution. The result showed that pH value increased along with the expanding of the depth of corrosion pits. However in the range of 0~10-4 cm, the pH variation was minimal. The cathodic reaction, which could lead to passivation of corrosion pits, gradually became faster because of the activation of Ga amalgam. The passivation depth of corrosion pits was about 10-5 cm.

Key words:  pitting corrosion      self-catalysis      passivation      amalgam     
Received:  10 October 2011     
ZTFLH:  TG174.41  
Corresponding Authors:  LI Junfeng     E-mail:  never-give-up-ljf@163.com

Cite this article: 

LI Junfeng, WEN Jiuba, HE Junguang, MA Jingling, LI Gaolin. MECHANISM OF PITTING CORROSION ACTIVATION AND PASSIVATION OF Al-Zn-Sn-Ga ALLOY. Journal of Chinese Society for Corrosion and protection, 2012, 32(5): 407-411.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I5/407

[1] Salinas D R, Garcia S G, Bessone J B. Influence of alloying elements and microstructure on aluminum sacrificial anode performance: case of Al-Zn [J]. J. Appl. Electrochem., 1999, 29(9): 1063-1071

[2] Yang T J, Li G M, Chen S, et al. Self-catalysis action in pitting propagation process of low alloy steels[J]. Corros. Prot., 2010, 31(7): 540-541 

     (杨铁军, 李国明, 陈珊等. 低合金钢点蚀扩展过程中的自催化作用[J]. 腐蚀与防护, 2010, 31(7): 540-541)

[3] Kang J, Fu R D, Luan G H, et al. In-situ investigation on the pitting corrosion behavior of friction stir welded joint of AA2024-T3 aluminum alloy[J]. Corros. Sci., 2010, 53(2): 620-626

[4] Xu G, Cao C N, Lin H C, et al. Electrochemical study of active dissolution for aluminum in neutral NaCl solution[J]. Corros. Sci. Prot. Technol., 1998, 10(6): 321-326

     (许刚, 曹楚南, 林海潮等. 纯铝在NaCl 溶液中活化溶解时电化学行为研究[J]. 腐蚀科学与防护技术, 1998, 10(6): 321-326)

[5] Qi G T, Guo Z H, Wei B K, et al. The effect of water-quenching on microstructure and electrochemistry performance of Al-Zn-Sn-Mg anode[J]. Trans. Met. Heat Treat., 2000, 21(4): 68-72 

      (齐公台, 郭稚弧, 魏伯康等. 固溶处理对Al-Zn-In-Sn-Mg阳极组织与电化学性能的影响[J]. 金属热处理学报, 2000, 21(4): 68-72)

[6] Cao C N. Principles of Electrochemistry[M]. Beijing: Chemical Industry Press, 2007

    (曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2004)

[7] Wen J B, Wang G W, Ma J L, et al. Effect of gallium on electrochemical properties of Al-Zn-Sn alloy anode[J]. Trans. Met. Heat Treat., 2010, 31(8): 30-33

    (文九巴, 王国伟, 马景灵等.Ga对Al-Zn-Sn系阳极合金电化学性能的影响[J]. 材料热处理学报, 2010, 31(8): 30-33)

[8] Zhu H W, Qu X Y, Hu Y, et al. Corrosion inhibition of flaky aluminum powders prepared through sol-gel process[J]. Corros. Sci., 2010, 53(1): 481-486

[9] Abedin S Z E, Enders F. Electrochemical behavior of Al, Al-In and Al-Ga-In alloys in chloride solutions containing zinc ions[J]. J. Appl. Electrochem., 2004, 34(10): 1071-1080

[10] Dean J A. Lange's Chemistry Handbook[M]. American: McGraw-Hill, 2003

[11] Naeini M F, Shariat M H, Eizadjou M. On the chloride-induced pitting of ultra fine grains 5052 aluminum alloy produced by accumulative roll bonding process[J]. J. Alloys Compd., 2011, 509(14): 4696-4700

[12] Liu G L. Study of stress corrosion mechanism of Ti alloys by recursion method[J]. Acta Metall. Sin., 2007, 43(3): 249-253

    (刘贵立. 递归法研究钛合金应力腐蚀机理[J]. 金属学报, 2007, 43(3): 249-253)

[13] Ei Shabyeb H A, Abd Ei Vahab F M. Effect of gallium ions  on the electrochemical behavior of Al-Sn and Al-Sn-Zn alloys in chloride solution[J]. Corros. Sci., 2001, 43(4): 642-643

[14] Bessone J B, Flamini D O, Saidman S B. Comprehensive model for the activation mechanism of Al-Zn alloys produced by indium[J]. Corros. Sci., 2005, 47(1): 95-105

[15] Li W, Li D Y. Influence of surface morphology on corrosion and electronic behavior[J]. Acta Mater., 2006, 54(2): 445-452

[16] Zaid B, Saidi D, Benzaid A, et al. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy[J]. Corros. Sci., 2008, 50: 1841-1847

[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[7] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[8] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[9] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[10] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[11] Han FENG,Zhigang SONG,Xiaohan WU,Hui LI,Wenjie ZHENG,Yuliang ZHU. Relationship Between Selective Corrosion Behavior and Duplex Structure of 022Cr25Ni7Mo4N Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[12] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[13] Jiulong SONG, Wenge CHEN, Nannan LEI. Passivation of T2 Cu and QCr0.5 Cu-alloy with Chromate-free Solutions of Molybdate Compound[J]. 中国腐蚀与防护学报, 2018, 38(2): 210-218.
[14] Yong ZHOU, Yu ZUO, Fu-an YAN. Effect and Mechanism of Inhibitors on Pitting Corrosion of Metals[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
[15] Han YAN, Qing ZHAO, Nan DU, Yanqing HU, Liqiang WANG, Shuaixing WANG. Formation Process and Corrosion Resistance of Trivalent Chromium Passivation Film on Zn-plated Q235 Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 547-553.
No Suggested Reading articles found!