Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (4): 291-295    DOI:
Current Issue | Archive | Adv Search |
STRESS CORROSION CRACKING OF 316Ti IN 300℃ HIGH TEMPERATURE WATER CONTAINING CHLORIDE IONS
TANG Zhanmei, HU Shilin, ZHANG Pingzhu
China Institute of Atomic Energy, Beijing 102413
Download:  PDF(2316KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The stress corrosion cracking (SCC) of 316Ti stainless steel (SS) in 300℃ high temperature water containing chloride ions was investigated with slow strain rate tensile (SSRT) techniques. The results showed that the values of fracture time and extension ratio and fracture energy of specimens significantly decreased with the concentration of chloride content increased, while stress corrosion sensitive index would significantly increase with the concentration of chloride ions increased. 316Ti SS was not susceptible to SCC when the chloride content was below 5 mg/L while transgranular and partially intergranular cracked when the chloride content was above 5 mg/L in aerated water. Stress corrosion cracks generally initiated from slipping steps or pits, maybe from the secondary phase ferrite. In propagation into the base metal, the cracks would be arrested by the secondary phase ferrite, so as to improve the resistance of SCC for 316Ti SS. Oxygen played a crucial role in SCC initiation and propagation of 316Ti SS in high temperature water.
Key words:  slow strain rate tension tests      stress corrosion cracking      crack initiation      crack propagation     
Received:  22 August 2011     
ZTFLH: 

TG172.82

 
Corresponding Authors:  TANG Zhanmei     E-mail:  zhanmeitang@163.com

Cite this article: 

TANG Zhanmei, HU Shilin, ZHANG Pingzhu. STRESS CORROSION CRACKING OF 316Ti IN 300℃ HIGH TEMPERATURE WATER CONTAINING CHLORIDE IONS. J Chin Soc Corr Pro, 2012, 32(4): 291-295.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I4/291

[1] Yang W. Stress corrosion cracking of engineering materials used in nuclear power plants [J]. Corros. Sci. Prot. Technol., 1995, 7(2): 87-92

    (杨武. 核电工程材料的应力腐蚀破裂研究[J]. 腐蚀科学与防护技术, 1995, 7(2): 87-92)

[2] Andresen P L. Environmentally assisted growth rate response of non-sensitized AISI 316 grade stainless steels in high temperature water [J]. Corrosion, 1988, 44: 450-460

[3] Ford F P. Quantitative prediction of environmentally assisted cracking [J]. Corrosion, 1996(52): 375-395

[4] Jivkov A P. Strain-assisted corrosion cracking[D]. Sweden: Malmo University, 2002

[5] Meletis E I, Hochman R F. Crystallography of stress corrosion cracking in pure magnesium [J]. Corrosion, 1984, 40(1): 39

[6] Zhang P Z, Liu X H, Hu S L, et al. Study on environment-sensitive cracking time for 316Ti stainless steel [J]. At. Energy Sci. Technol., 1999, 33(2): 141-144

    (张平柱, 刘兴华, 胡石林等. 316Ti不锈钢环境敏感断裂起裂时间研究 [J]. 原子能科学技术, 1999, 33(2): 141-144)

[7] Xu S, Wu X Q, Han E H, et al. Low cycle fatigue fracture for 316Ti stainless steel in high temperature and pressure water [J]. J. Chin. Soc. Corros. Prot., 2010, 30(2): 120-125

    (徐松, 吴欣强, 韩恩厚等. 316Ti不锈钢在模拟核电高温高压水中的腐蚀疲劳裂纹断口研究[J]. 中国腐蚀与防护学报, 2010, 30(2): 120-125)

[8] Najarajan S, Karthega M, Rajendran N. Pitting corrosion studies of super austenitic stainless steels in natural sea water using dynamic electrochemical impedance spectroscopy[J]. J. Appl. Electrochem., 2007, 37: 195-201

[9] Yu F H, Chen C M, Zhou F G, et al. A study of the role of molybdenum in 316 stainless steel on SCC resistance in high temperature and high pressure water with the aid of CEMS, AES and XPS [J]. J. Chin. Soc. Corros. Prot., 1985, 5(8): 177-190

    (俞方华, 陈传明, 周福根等. CEMS、AES和XPS研究316钢中Mo在抗高温高压水应力腐蚀中的作用[J]. 中国腐蚀与防护学报, 1985, 5(8): 177-190)
[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] AI Fangfang, CHEN Yiqing, ZHONG Bin, LI Lin, GAO Peng, SHAN Hongyu, SU Xiandong. Stress Corrosion Cracking Behavior of T95 Oil Well Pipe Steel in Sour Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[4] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[6] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[7] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[8] Haisheng TONG,Yanhui SUN,Yanjing SU,Xiaolu PANG,Kewei GAO. Investigation on Hydrogen-induced Cracking Behavior of 2205 Duplex Stainless Steel Used for Marine Structure[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[9] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[10] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[11] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[12] Naiqiang ZHANG,Guoqiang YUE,Fabin LV,Qi CAO,Mengyuan LI,Hong XU. Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[13] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[14] Yueling GUO,En-Hou HAN,Jianqiu WANG. Effect of Post-forging Heat Treatment on Stress Corrosion Cracking of Nuclear Grade 316LN Stainless Steel in Boiling MgCl2 Solution[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
[15] Zhiming ZHANG,Qingjiao PENG,Jianqiu WANG,En-Hou HAN,Wei KE. Stress Corrosion Cracking Behavior of Forged 316L Stainless Steel Used for Nuclear Power Plants in Alkaline Solution at 330 ℃[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
No Suggested Reading articles found!