|
|
INFLUENCE OF NIOBIUM AND NITROGEN ON THE RESISTANCE TO PITTING AND INTERGRANULAR CORROSION OF 304 AUSTENITIC STAINLESS STEEL |
SUN Tao, DENG Bo, XU Juliang, LI Jin, JIANG Yiming |
Department of Materials Science, Fudan University, Shanghai 200433 |
|
|
Abstract The 304 austenitic stainless steels with the different doped content of nitrogen (N) and niobium (Nb), have been tested separately using potentiodynamic polarization curve scanning and electrochemical potentiodynamic reactivation method (EPR). The resistance to pitting corrosion of the specimens was evaluated by the pitting potential (Eb), and the reactivation rate reflected the resistance to intergranular corrosion. The experiment results showed that the resistance to pitting corrosion of the 304 austenitic stainless steels has been obviously improved by the rising doped content of N. It was also observed that when there is a little doped content of N, the resistance to intergranular corrosion suffered a negative influence, but with the increasing amount of N(above 0.2%), the bad effect for specimen resistance to intergranular corrosion disappeared. The Nb doping played a positive role in the specimen resistance to intergranular corrosion but a negative role in resistance to pitting corrosion. Based on the results above, a proper doped content of Nb and N was given, and the mechanism of the influence on the anticorrosion performance of the stainless steel caused by the microalloying was discussed.
|
Received: 16 October 2009
|
|
Corresponding Authors:
JIANG Yiming
E-mail: ymjiang@fudan.edu.cn
|
[1] Tian H. Chromizing subsequent solid solution nitriding multiple process of 304 stainless steel [J]. Heat Treat. Technol. Equip., 2006, 27(4): 20-23 (田华. 304不锈钢渗铬固溶渗氮复合处理工艺研究 [J]. 热处理技术与装备, 2006, 27(4): 20-23)[2] Piekarski B. Effect of Nb and Ti additions on microstructure, and identification of precipitates in stabilized Ni-Cr cast austenitic steels [J]. Mater. Charact., 2001, 47: 181-186[3] Jin Z Y. The electrochemical behavior and composition depth-profiles of the passive film of ferritic stainless steel [J]. J. Chin. Soc.Corros. Prot.,1985, 5(1): 46-53 (金镇源. 含铌铁素体不锈钢的电化学行为和钝化膜中各元素的分布 [J]. 中国腐蚀与防护学报, 1985, 5(1): 46-53)[4] Yuan Z Z, Dai Q X, Chen X N, et al. Effects of nitrogen in austenitic stainless steels [J]. J. Jiangsu Univ. (Nat. Sci.), 2002, 23(3): 72-75 (袁志钟, 戴起勋, 程晓农等. 氮在奥氏体不锈钢中的作用 [J]. 江苏大学学报(自然科学版), 2002, 23(3): 72-75)[5] Gui L F, Wu M D, Zhao Y. Handbook of Material Testing for Mechanical Engineering [M]. Shenyang: Liaoning Science and Technology Publishing House 2002. 201-205 (桂立丰, 吴民达, 赵源. 机械工程材料测试手册 [M]. 沈阳: 辽宁科学技术出版社, 2002. 201-205)[6] Yu Q B, Sun Y, Li Z L, et al. Effect of micro Nb solutioned in steel [J]. Iron Steel, 2006, 41(2): 59-62 (于庆波, 孙莹, 李子林等. 微量固溶Nb在钢中的作用 [J]. 钢铁,2006, 41(2): 59-62)[7] Yan H T, Bi H Y, Li X, et al. Microstructure and texture of Nb+Ti stabilized ferritic stainless steel [J]. Mater. Charact., 2008, 59:174-1746[8] Yan H T, Bi H Y, Li X, et al. Effect of two-step cold rolling and annealing on texture, grain boundary character distribution and r-value of Nb+Ti stabilized ferritic stainless steel [J]. Mater. Charact., 2009, 60: 65-68[9] Yan H T, Bi H Y, Li X, et al. Precipitation and mechanical properties of Nb-modified ferritic stainless steel during isothermal aging [J]. Mater. Charact., 2009, 60: 204-209[10] Wang H T, Zhao J M, Zuo Y. The effects of some anions on metastable pitting of 316L stainless steel [J]. J. Chin. Soc.Corros. Prot., 2002, 22(4): 202-206 (王海涛, 赵景茂, 左禹. 几种阴离子对316L不锈钢亚稳态孔蚀行为的影响 [J]. 中国腐蚀与防护学报, 2002, 22(4): 202-206)[11] Deng B, Jiang Y M, Hao R W, et al. Synergetic effect of fluoride and chloride on the critical pitting temperature of 316 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2008, 28(1): 30-33 (邓博, 蒋益明, 郝允卫等. F-和Cl-对316不锈钢临界点蚀温度的协同作用 [J]. 中国腐蚀与防护学报, 2008, 28(1): 30-33)[12] Wu W W, Jiang Y M, Liao J X, et al. Influence of Cl- on critical pitting temperature for 304 and 316 stainless steel [J]. Corros. Sci. Prot. Technol., 2007, 19(1): 16-19 (吴玮巍, 蒋益明, 廖家兴等. Cl离子对304、316不锈钢临界点蚀温度的影响 [J]. 腐蚀科学与防护技术, 2007, 19(1): 16-19)[13] Li D G, Chen D R, Feng Y R. Investigation on the composition and semi-conductive property of the passive film on 22Cr duplex stainless steel [J]. Acta Chim. Sin., 2008, 66(21): 2329-2335 (李党国, 陈大融, 冯耀荣. 22Cr双相不锈钢钝化膜组成及其半导体性能研究 [J]. 化学学报2008, 66(21): 2329-2335)[14] Xu C C, Gang Y Y. Influence of N content on corrosion resistance of high-purity austenitic stainless steel and its mechanism research [J]. J. Iron Steel Res., 1996, 08(suppl.): 20-25 (许崇臣, 冈毅民. 氮含量对高纯奥氏体不锈钢耐蚀性能的影响及机理的研究 [J]. 钢铁研究学报, 1996, 08(增刊): 20-25)[15] Briant C L. A comparison between grain-boundary chromium depletion in austenitic stainless-steel and corrosion in the modified strauss test [J]. Corrosion, 1986, 42: 523[16] Mozhi T A, Betrabet H S, Jagannathan V, et al. Thermodynamic modeling of sensitization of AISI 304 stainless steels containing nitrogen [J]. Scr. Metall., 1986, 20(5): 723-728[17] Wang J, Kang X F. Effect of nitrogen on corrosion resistance and sensitization behavior of 316L austenitic stainless steel [J]. J. Iron Steel Res.,1993, 05(suppl.): 56-64 (王俊, 康喜范. 氮对316L奥氏体不锈钢耐腐蚀性影响及其敏华行为的研究 [J]. 钢铁研究学报, 1993, 05(增刊): 56-64) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|