Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2026, Vol. 46 Issue (1): 25-36    DOI: 10.11902/1005.4537.2025.106
Current Issue | Archive | Adv Search |
Research Progress on Laser Cladding Anti-corrosion and Wear-resistant Coatings for Hydraulic Support Column
HU Hongyu1, WANG Yuefei1, YAN Haixin1, SHI Jianjun2, WU Duoli1()
1.Jiangsu Key Laboratory of Surface Strengthening and Functional Manufacturing College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
2.Industrial Center, Nanjing Institute of Technology, Nanjing 211167, China
Cite this article: 

HU Hongyu, WANG Yuefei, YAN Haixin, SHI Jianjun, WU Duoli. Research Progress on Laser Cladding Anti-corrosion and Wear-resistant Coatings for Hydraulic Support Column. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 25-36.

Download:  HTML  PDF(4038KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hydraulic support is one of the important coal mining machinery equipment for underground coal mining, whilst, the reliability of the hydraulic support has a direct impact on the safety of underground coal mining operations. Which is long-term exposed to complex underground service conditions featuring high humidity, high corrosive media containing chloride ions, hydrogen sulfide, sulfur oxide and various adhesive dusts, as well as high mechanical load. Hence, the surface of hydraulic support column cylinder will be suffered from corrosion wear. Therefore, to improve the reliability of the hydraulic support and extend its service life is the key to ensure safe mining operations. The preparation of high-performance coatings on the surface of hydraulic support columns is an important technical means to solve the problem of corrosion and wear and improve safety and reliability. Coating preparation technology in industrial applications has a variety of forms, which can be directly in the active stent surface preparation of anti-corrosion wear-resistant coatings, enhance the hydraulic stent column cylinder surface performance, to extend the service life, can also be used as a means of remanufacturing, such as to repair damaged cylinders, reduce mining costs, to ensure the sustainable development of resources. This paper first summarizes the common protective coating preparation methods, describes several preparation methods of hydraulic support column protective coatings, including electroplating, thermal spraying, laser cladding, arc melting copper, etc., and discusses the preparation methods, in terms of their advantages and disadvantages. Secondly, the materials with excellent comprehensive performance used in the laser cladding technology are further reviewed, and different coating materials are analyzed from aspects of different processing conditions and different needs of the inner and outer surfaces of the bracket cylinder, including Fe-based self-fusing powder, Ni-based self-fusing powder, Cu-based powder and composite powder. Finally, from the two aspects of coating preparation technology and material system, the anticorrosion and wear-resistant coating of laser cladding hydraulic support column is expected.

Key words:  laser cladding      hydraulic support      corrosion resistance      wear resistance      research status     
Received:  01 April 2025      32134.14.1005.4537.2025.106
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52101100);National Natural Science Foundation of China(52471097);Yangzhou City-Yangzhou University Cooperation Foundation(YZ2023208);Qing Lan Project of Yangzhou University

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.106     OR     https://www.jcscp.org/EN/Y2026/V46/I1/25

ProcessingAdvantageDisadvantage
Electroplating① Low process costs① Prone to defects
② High hardness② Generating hazardous substances during the process
Thermal spray① Wide choice of coating materials① The coating and the substrate are mainly mechanically bonded, and the bonding strength is weak
② Good overall performance② Cracks may occur when unmelted powder hits the substrate at high speeds
Laser cladding① Metallurgical bonding of the coating to the substrate① The coating is susceptible to cracking due to thermal stress
② Good density
Arc melting copper① Metallurgical bonding of the coating to the substrate① High equipment costs
② Good electrical conductivity, thermal conductivity, self-lubricating properties② Single copper coating performance is weak, need to add other alloying elements
Table 1  Advantages and disadvantages of common preparation processes of coatings for the repair of hydraulic support columns
Fig.1  Corrosion (a) and coating repair (b) of external surfaces of hydraulic support columns[3]
Fig.2  Corrosion (a) and coating repair (b) of inner surfaces of hydraulic support columns[23]
Fig.3  Micrographs of of 416 stainless steel before (a) and after (b) chromiumplating[27]
Fig.4  Enlarged images of the interface between HVOF deposited WC-10Co-4Cr coating and 27SiMn steel substrate: (a) metallurgical bonded area and crack, (b) crack[33]
SubstrateCoating materialThickness / μmHardnessCorrosion test methodCorrosion test results
Electroplating416 stainless steelHard chrome[27]11-194 (Depends on plating time)900HV
27SiMnCu-Cr[28]30-45800HVCopper accelerated acetic acid salt spray (CASS)Meeting production needs
Thermal45 steelWC10Co4Cr[8]420-450(1163.6 ± 12.4)HV300CASSRusting after 120 h
spraying
27SiMnWC-Cr3C2-M[32]300-350951.4HV0.3CASSNo visible corrosion
spots after 312 h
Hydrogen sulfideNo visible corrosion
corrosion testspots after 240 h
Sulfur dioxideNo visible corrosion
corrosion testspots after 312 h
27SiMnWC[33]1200HV[27]
Laser cladding27SiMnFe-based alloy500.1HV0.3
powder[35]
27SiMn316L[36]1000400HV0.23.5%NaCl electrochemicalEcorr = 0.053 V
corrosionRp = 22.881 Ω·cm²
Icorr = 1.018 A/cm²
Arc melting27SiMnAluminum200HV0.53.5%NaCl electrochemicalEcorr = -0.53 V
copperbronze[43]corrosionDense holes in the
surface of the coating
CASSCorrosion material
after 100 h
27SiMnAluminum540HV0.53.5%NaCl electrochemicalEcorr = -0.85 V
bronze[44]corrosion
Aluminum bronze +550HV0.5Ecorr = -0.8 V
Ni、Mn[44]
Aluminum bronze +550HV0.5Ecorr = -0.6 V
Si[44]
Table 2  Application examples of protective coatings for hydraulic supports
Fig.5  Laser cladding material systems
Fig.6  Microscopic morphologies of several coatings: (a) Fe-based coating[47]; (b) Ni-based coating[52]; (c) Cu-based coating[56];(d) Ni25/CeO2 composite coating[60]
Fig.7  Microstructures of the central regions of Ni-Cr-B-Si coatings[50]
[1] Huo C, Liu T J, Fan B, et al. Study on national coal resources exploration and exploitation layout under carbon neutrality and emission peak settings [J]. Geol. Rev., 2022, 68: 938
霍 超, 刘天绩, 樊 斌 等. 双碳背景下我国煤炭资源勘查开发布局研究 [J]. 地质论评, 2022, 68: 938
[2] Dong Z P. Selection and influencing factors of coal mining methods and technologies in coal mines [J]. Energy Conserv., 2023, (10): 55
董志鹏. 煤矿采煤方法与采煤技术的选择及其影响因素 [J]. 能源与节能, 2023, (10): 55
[3] Chen J, Liu Y J, Yuan J T, et al. Analysis on the localized corrosion of hydraulic support after short-term service in coal mine [J]. Mater. Res. Express, 2022, 9: 026501
[4] Wang Z H. Corrosion mechanism and protection techniques of columns of hydraulic supports [J]. Min. Proc. Eq., 2011, 39(9): 16
王志华. 液压支架立柱的腐蚀机理及其防护 [J]. 矿山机械, 2011, 39(9): 16
[5] Pan J Y, Chen H H, Ma F, et al. Corrosion behavior of low alloy steels in high-mineralized mine water [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 253
潘俊艳, 陈华辉, 马 峰 等. 低合金钢在高矿化度矿井水环境下的腐蚀行为 [J]. 中国腐蚀与防护学报, 2016, 36: 253
doi: 10.11902/1005.4537.2015.128
[6] Cao P, Lei G F, Su C M, et al. Influence of different feeding process on laser cladding remanufacturing of hydraulic support [J]. Mater. Rep., 2021, 35(suppl.): 424
曹 鹏, 雷高峰, 苏成明 等. 不同送料工艺对液压支架激光熔覆再制造的影响 [J]. 材料导报, 2021, 35(): 424
[7] Chen S N, Lou L Y, Ji G, et al. Microstructure and properties of Fe-based alloy prepared by ultra-high speed laser cladding and conventional laser cladding [J]. Surf. Technol., 2022, 51(12): 358
陈书楠, 娄丽艳, 纪 纲 等. 超高速与常规激光熔覆Fe基涂层微观组织及性能研究 [J]. 表面技术, 2022, 51(12): 358
[8] Wu M, Pan L, Duan H T, et al. Study on wear resistance and corrosion resistance of HVOF surface coating refabricate for hydraulic support column [J]. Coatings, 2021, 11: 1457
doi: 10.3390/coatings11121457
[9] El-Awadi G A. Review of effective techniques for surface engineering material modification for a variety of applications [J]. AIMS Mater. Sci., 2023, 10: 652
[10] Giurlani W, Zangari G, Gambinossi F, et al. Electroplating for decorative applications: Recent trends in research and development [J]. Coatings, 2018, 8: 260
doi: 10.3390/coatings8080260
[11] Vardelle A, Moreau C, Akedo J, et al. The 2016 thermal spray roadmap [J]. J. Therm. Spray Technol., 2016, 25: 1376
doi: 10.1007/s11666-016-0473-x
[12] Zhu L D, Xue P S, Lan Q, et al. Recent research and development status of laser cladding: a review [J]. Opt. Laser Technol., 2021, 138: 106915
doi: 10.1016/j.optlastec.2021.106915
[13] Wu D L, Wu H T, Sun H, et al. Research status and development of laser cladding high temperature protective coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 725
吴多利, 吴昊天, 孙 珲 等. 激光熔覆高温防护涂层研究现状及发展方向 [J]. 中国腐蚀与防护学报, 2023, 43: 725
doi: 10.11902/1005.4537.2023.160
[14] Azwan M, Maleque M A, Rahman M M. TIG torch surfacing of metallic materials-a critical review [J]. Trans. IMF, 2019, 97(1): 12
doi: 10.1080/00202967.2019.1551284
[15] Wang Y, Li X C. Corrosion mechanism and protection measures of hydraulic support [J]. Coal Mine Mach., 2021, 42(9): 159
王 毅, 李小池. 液压支架的腐蚀机理及防护措施 [J]. 煤矿机械, 2021, 42(9): 159
[16] Wang L, Sun L, Li L P, et al. Research progress on green remanufacturing and repair technology for mining components [J]. Weld. Technol., 2024, 53(2): 1
王 亮, 孙 亮, 李凌鹏 等. 矿用零部件绿色再制造修复技术研究进展 [J]. 焊接技术, 2024, 53(2): 1
[17] Cheng X B, Meng H C, Zhang Z Q. Internal surface corrosion reason for hydraulic cylinder of a hydraulic powered roof support [J]. Corros. Prot., 2017, 38: 407
程相榜, 孟贺超, 张自强. 液压支架油缸内表面的腐蚀原因 [J]. 腐蚀与防护, 2017, 38: 407
[18] Burstein G T, Liu C, Souto R M, et al. Origins of pitting corrosion [J]. Corros. Eng., Sci. Technol., 2004, 39: 25
[19] Lei X W, Wang H Y, Wang N, et al. Passivity of martensitic stainless steel in borate buffer solution: Influence of sulfide ion [J]. Appl. Surf. Sci., 2019, 478: 255
doi: 10.1016/j.apsusc.2019.01.250
[20] Wang Z, Feng Z, Zhang L. Effect of high temperature on the corrosion behavior and passive film composition of 316 L stainless steel in high H2S-containing environments [J]. Corros. Sci., 2020, 174: 108844
doi: 10.1016/j.corsci.2020.108844
[21] Geng Z Z, Zhang Y Z, Du X J, et al. Synergistic effect of S2- and Cl- on corrosion and passivation behavior of 316L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 797
耿真真, 张钰柱, 杜小将 等. S2-和Cl-对316L奥氏体不锈钢的腐蚀钝化行为的协同作用 [J]. 中国腐蚀与防护学报, 2024, 44: 797
doi: 10.11902/1005.4537.2023.236
[22] Wang Z, Zhang L, Zhang Z R, et al. Combined effect of pH and H2S on the structure of passive film formed on type 316L stainless steel [J]. Appl. Surf. Sci., 2018, 458: 686
doi: 10.1016/j.apsusc.2018.07.122
[23] Zhang H Y. Study on microstructure and properties of cladding layer on inner wall of hydraulic support cylinder [D]. Xi'an: Xi'an University of Science and Technology, 2022
张海瑜. 液压支架油缸内壁熔覆层的组织与性能研究 [D]. 西安: 西安科技大学, 2022
[24] Zhang L, Guo Z, Jiang X M, et al. Principle of hard chrome electroplating and analysis on structure and performance of chromium layer [J]. Mater. Prot., 2019, 52(4): 142
张 理, 郭 震, 蒋晓明 等. 电镀硬铬工艺原理及铬层组织与性能浅析 [J]. 材料保护, 2019, 52(4): 142
[25] Kir H, Apay S. Effect of hard chrome plating parameters on the wear resistance of low carbon steel [J]. Mater. Test., 2019, 61: 1082
doi: 10.3139/120.111423
[26] Cai T T, Yang Y, Li Y F, et al. Effects of electroplating current density on corrosion resistance of aluminum-magnesium alloy [J]. Surf. Technol., 2017, 46(12): 245
蔡婷婷, 杨 云, 李艳芳 等. 电镀电流密度对铝锰合金镀层耐蚀性的影响 [J]. 表面技术, 2017, 46(12): 245
[27] Almotairi A, Warkentin A, Farhat Z. Mechanical damage of hard chromium coatings on 416 stainless steel [J]. Eng. Fail. Anal., 2016, 66: 130
doi: 10.1016/j.engfailanal.2016.04.011
[28] Ji Z J, Zhang H Y. Research about technology of corrosion treatment process of coal mine hydraulic support column (piston rod) [J]. Coal Mine Mach., 2016, 37(4): 89
纪正君, 张海英. 煤矿液压支架立柱(活塞杆)表面耐腐蚀处理工艺研究 [J]. 煤矿机械, 2016, 37(4): 89
[29] Wasekar N P, Sundararajan G. Sliding wear behavior of electrodeposited Ni-W alloy and hard chrome coatings [J]. Wear, 2015, 342-343: 340
doi: 10.1016/j.wear.2015.10.003
[30] Matthews S, James B. Review of thermal spray coating applications in the steel industry: Part 1—hardware in steel making to the continuous annealing process [J]. J. Therm. Spray Technol., 2010, 19: 1267
doi: 10.1007/s11666-010-9518-8
[31] Yang K, Chen C, Xu G Z, et al. Application status and prospects of thermal spraying technology in metallurgical field under harsh service environment [J]. Surf. Technol., 2022, 51(1): 16
杨 康, 陈 诚, 徐国正 等. 冶金严苛服役环境中热喷涂技术的应用现状及展望 [J]. 表面技术, 2022, 51(1): 16
[32] Zhang J H, Wang Q, Deng B H, et al. Properties and application on the hydraulic support plunger of WC-Cr3C2-M coating deposited by high velocity oxygen fuel spray process [J]. Therm. Spray Technol., 2018, 10(3): 27
张景河, 王 群, 邓帮华 等. 超音速火焰喷涂WC-Cr3C2-M涂层性能及其在液压支架立柱上的应用研究 [J]. 热喷涂技术, 2018, 10(3): 27
[33] Wang Y, Fang M, Zhang Z M. Study on deposition mechanism of WC coating on 27SiMn steel prepared by HVAF [J]. Hot Work. Technol., 2020, 49(6): 106
王 勇, 方 敏, 张治民. HVAF制备27SiMn钢WC涂层沉积机理研究 [J]. 热加工工艺, 2020, 49(6): 106
[34] Raj D, Maity S R, Das B. State-of-the-art review on laser cladding process as an in-situ repair technique [J]. Proc. Inst. Mech. Eng., Part E, 2021, 236: 1194
[35] Bai Q F, Ouyang C Y, Zhao C J, et al. Microstructure and wear resistance of laser cladding of Fe-based alloy coatings in different areas of cladding layer [J]. Materials, 2021, 14: 2839
doi: 10.3390/ma14112839
[36] Chen G, Fan C H, Zeng G S, et al. Influence of cladding layer thickness on structure and properties of laser cladding 316L coating [J]. J. Hunan Univ. (Nat. Sci.), 2018, 45(12): 53
陈 刚, 范才河, 曾广胜 等. 熔覆层厚度对激光熔覆316L涂层组织及性能的影响 [J]. 湖南大学学报(自然科学版), 2018, 45(12): 53
[37] Fu F X, Zhang Y L, Chang G R, et al. Analysis on the physical mechanism of laser cladding crack and its influence factors [J]. Optik, 2016, 127: 200
doi: 10.1016/j.ijleo.2015.10.043
[38] Chen Z X, Zhou H M, Xu C X. Cladding crack in laser cladding: A review [J]. Laser Optoelectron. Prog., 2021, 58: 0700006
陈滋鑫, 周后明, 徐采星. 激光熔覆裂纹研究现状 [J]. 激光与光电子学进展, 2021, 58: 0700006
[39] Lu Y Z, Lei W N, Ren W B, et al. Crack analysis and control of laser cladding Inconel718 alloy [J]. Surf. Technol., 2020, 49(9): 233
鲁耀钟, 雷卫宁, 任维彬 等. 激光熔覆Inconel718合金裂纹分析及裂纹控制研究 [J]. 表面技术, 2020, 49(9): 233
[40] Wang R, Wang Y L, Jiang F L, et al. Effect of substrate preheating on crack sensitivity of Al2O3-ZrO2 ceramic coating prepared by laser cladding [J]. Surf. Technol., 2022, 51(3): 342
王 冉, 王玉玲, 姜芙林 等. 基体预热对激光熔覆制备Al2O3-ZrO2陶瓷涂层裂纹敏感性的影响 [J]. 表面技术, 2022, 51(3): 342
[41] Liu M F. Application of laser cladding and inner wall copper melting technology on hydraulic support [J]. China Energy Environ. Prot., 2018, 40(11): 163
刘鸣放. 激光熔覆和内壁熔铜技术在液压支架上的应用 [J]. 能源与环保, 2018, 40(11): 163
[42] Liu Y N, Wang Y P, Zhu R F, et al. Research status and development trend of wear-resistant copper alloy [J]. Mater. Mech. Eng., 2021, 45(1): 1
doi: 10.11973/jxgccl202101001
刘宇宁, 王云鹏, 祝儒飞 等. 耐磨铜合金的研究现状与发展趋势 [J]. 机械工程材料, 2021, 45(1): 1
doi: 10.11973/jxgccl202101001
[43] Tao X S, Zhang H Y, Gong C, et al. Study on microstructure and corrosion behavior of laser cladding coating/inner copper melting coating on hydraulic cylinder [J]. Sci. Technol. Innov., 2022, (33): 34
陶小松, 张海瑜, 宫 成 等. 液压油缸内壁激光熔覆层/内壁熔铜层的微观组织及腐蚀行为研究 [J]. 科学技术创新, 2022, (33): 34
[44] Jiao Y, Zhang H Y, Xia H G, et al. Study on microstructure and service behavior of inner copper melting coating on hydraulic cylinder [J]. Coal Mine Mach., 2022, 43(9): 99
焦阳, 张海瑜, 夏护国 等. 液压油缸内壁熔铜的微观组织及服役行为研究 [J]. 煤矿机械, 2022, 43(9): 99
[45] Dong S Y, Ma Y Z, Xu B S, et al. Current status of material for laser cladding [J]. Mater. Rep., 2006, (6): 5
董世运, 马运哲, 徐滨士 等. 激光熔覆材料研究现状 [J]. 材料导报, 2006, (6): 5
[46] Jian H H. Experimental study of laser cladding on 27SiMn steel surface of hydraulic support column [D]. Xi'an: Xi'an University of Science and Technology, 2017
菅含含. 液压支架立柱材料27SiMn钢表面激光熔覆实验研究 [D]. 西安: 西安科技大学, 2017
[47] Ouyang C Y, Bai Q F, Yan X G, et al. Microstructure and corrosion properties of laser cladding Fe-based alloy coating on 27SiMn steel surface [J]. Coatings, 2021, 11: 552.
doi: 10.3390/coatings11050552
[48] Han C Y, Sun Y N, Xu Y F, et al. Research on wear and electrochemical corrosion properties of laser cladding nickel base alloy [J]. Surf. Technol., 2021, 50(11): 103
韩晨阳, 孙耀宁, 徐一飞 等. 激光熔覆镍基合金磨损及电化学腐蚀性能研究 [J]. 表面技术, 2021, 50(11): 103
[49] Zhang C Y, Li S, Bao Z B, et al. Stripping and refurbishment of (Ni, Pt) Al coating after service for different oxidation durations [J]. J. Chin. Soc. Corros. Prot, 2025, 45: 201
张彩云, 李 帅, 鲍泽斌 等. 氧化不同时间(Ni, Pt)Al涂层的退除及再涂覆行为研究 [J]. 中国腐蚀与防护学报, 2025, 45: 201
doi: 10.11902/1005.4537.2024.226
[50] de Sousa J M S, Ratusznei F, Pereira M, et al. Abrasion resistance of Ni-Cr-B-Si coating deposited by laser cladding process [J]. Tribol. Int., 2020, 143: 106002
doi: 10.1016/j.triboint.2019.106002
[51] Naghiyan F M, Shoja-Razavi R, Mansouri H A, et al. Evaluation of the hot corrosion behavior of Inconel 625 coatings on the Inconel 738 substrate by laser and TIG cladding techniques [J]. Opt. Laser Technol., 2019, 111: 744
doi: 10.1016/j.optlastec.2018.09.011
[52] Ding Y H, Bi W Y, Zhong C, et al. A comparative study on microstructure and properties of ultra-high-speed laser cladding and traditional laser cladding of Inconel625 coatings [J]. Materials, 2022, 15: 6400
doi: 10.3390/ma15186400
[53] Ding Y H, Gui W Y, Nie B X, et al. Elimination of elemental segregation by high-speed laser remelting for ultra-high-speed laser cladding Inconel 625 coatings [J]. J. Mater. Res. Technol., 2023, 24: 4118
doi: 10.1016/j.jmrt.2023.04.028
[54] Chen Y Q, Yu M, Cao K. et al. Advance on copper-based self-lubricating coatings [J]. Surf. Technol., 2021, 50(2): 91
陈雨晴, 余 敏, 曹 开 等. 铜基自润滑涂层的研究进展 [J]. 表面技术, 2021, 50(2): 91
[55] Jadhav S D, Dadbakhsh S, Goossens L, et al. Influence of selective laser melting process parameters on texture evolution in pure copper [J]. J. Mater. Process. Technol., 2019, 270: 47
doi: 10.1016/j.jmatprotec.2019.02.022
[56] Zhang P L, Liu X P, Lu Y L, et al. Microstructure and wear behavior of Cu-Mo-Si coatings by laser cladding [J]. Appl. Surf. Sci., 2014, 311: 709
doi: 10.1016/j.apsusc.2014.05.141
[57] Xu J B. Performance optimization of copper base alloy powder for laser cladding of hydraulic support cylinder holes [J]. MW Met. Form., 2023, (8): 95
许金宝. 液压支架油缸内孔激光熔覆用铜基合金粉末性能优化 [J]. 金属加工(热加工), 2023, (8): 95
[58] Li Q, Chen F Q, Wang Q, et al. Research progress of laser-cladding WC reinforced Ni-based composite coating [J]. Surf. Technol., 2022, 51(2): 129
李 倩, 陈发强, 王 茜 等. 激光熔覆WC增强Ni基复合涂层的研究进展 [J]. 表面技术, 2022, 51(2): 129
[59] Li G, Zhang J B, Wen Y, et al. Microstructure and properties of coating of Ni35 powder doped with high carbon ferrochrome powder by laser cladding [J]. Rare Met. Mater. Eng., 2018, 47: 1830
李 刚, 张井波, 温 颖 等. Ni35掺杂高碳铬铁粉激光熔覆涂层的组织和性能 [J]. 稀有金属材料与工程, 2018, 47: 1830
[60] Ye F X, Shao W X, Ye X C, et al. Microstructure and corrosion behavior of laser-cladding CeO2-doped Ni-based composite coatings on TC4 [J]. J. Chem., 2020, 2020(1): 8690428
[61] Wang Q, Yang J, Niu W J, et al. Effect of La2O3 on the microstructure and properties of laser cladding Fe-based JG-8 alloy [J]. Rare Met. Mater. Eng., 2021, 50: 2125
王 强, 杨 驹, 牛文娟 等. La2O3对激光熔覆铁基JG-8合金组织与性能的影响 [J]. 稀有金属材料与工程, 2021, 50: 2125
[62] Zhou L, Ma G Z, Zhao H C, et al. Research status and prospect of extreme high-speed laser cladding technology [J]. Opt. Laser Technol., 2024, 168: 109800
doi: 10.1016/j.optlastec.2023.109800
[63] Yang H Y, Liu C Q, Xiong F, et al. Research progress on preparation of corrosion-resistant coatings by extreme high-speed laser material deposition [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 847
杨海云, 刘春泉, 熊 芬 等. 超高速激光熔覆制备耐腐蚀涂层研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 847
doi: 10.11902/1005.4537.2023.369
[64] Wang X L, Zhang W L, Hou J, et al. Application research on ultra-high speed laser cladding on shearer gear [J]. MW Met. Form., 2020, (7): 22
王先龙, 张维林, 侯 军 等. 超高速激光熔覆在采煤机齿轮上应用研究 [J]. 金属加工(热加工), 2020, (7): 22
[65] Zhao F, Guo T M, Li Q, et al. Effect of solution aging treatment on microstructure and properties of Fe‐0.5C‐11Cr corrosion resistant alloy by laser cladding [J]. J. Alloy. Compd., 2022, 922: 166142
doi: 10.1016/j.jallcom.2022.166142
[66] Zhang Z H, Sun W L, Huang Y, et al. Microstructures and properties of Fe-based coating prepared by high-speed laser cladding and remelting [J]. Laser Optoelectron. Prog., 2021, 58: 2114009
张志虎, 孙文磊, 黄 勇 等. 高速激光熔覆和重熔复合技术制备铁基涂层的组织性能研究 [J]. 激光与光电子学进展, 2021, 58: 2114009
[1] ZHOU Li, CAO Xiaodie, LAI Youbin, DING Wangwang, WEI Boxin, WU Jiajun. Research Progress in Influence of Heat Treatment on Corrosion Behavior of Additive Manufactured Parts[J]. 中国腐蚀与防护学报, 2026, 46(1): 37-48.
[2] DING Hao, DU Lingxiao, SHU Qin, CAO Fuyang, XIE Yun, PENG Xiao. Effect of WC Content on Wear and Corrosion Performance of Laser Cladding AlCoCrFeNi2.1 Eutectic High-entropy Alloy Coating[J]. 中国腐蚀与防护学报, 2026, 46(1): 126-136.
[3] LIU Hailong, WANG Li, ZHAO Weiguo, HAN Jiayu, WANG Qingsong, LONG Jiayi, HE Xing, GAO Lili, WANG Hua, HU Ping. Preparation and High-temperature Oxidation Resistance of Laser Clad Si-ZrB2-Ti-Cr Multi-component Coatings on Mo-alloy[J]. 中国腐蚀与防护学报, 2026, 46(1): 155-164.
[4] JI Yunhan, WANG Qinying, ZHENG Jie, LI Yixuan, XI Yuchen, DONG Lijin, ZHANG Yangfei, BAI Shulin. Microstructure and Tribocorrosion Behavior of Laser Cladding Coating of a Non-magnetic Drill Collar Stainless Steel[J]. 中国腐蚀与防护学报, 2026, 46(1): 175-185.
[5] WANG De, ZHANG Fan, WANG Xingqi, ZHANG Hexin, ZHAO Chengzhi, YANG Yange. Long-term Corrosion Resistance of Carbon Steel and Al-alloy with Single Component Fluorocarbon Modified Epoxy Coating[J]. 中国腐蚀与防护学报, 2025, 45(6): 1549-1562.
[6] ZHOU Hongtao, WANG Linlin, WANG Min, WANG Ping, MA Yingche. Influence of Al-content on Corrosion Resistance of Alumina-forming Austinite Steel in Molten Pb-Bi Alloy Eutectic[J]. 中国腐蚀与防护学报, 2025, 45(6): 1563-1574.
[7] WANG Lifang, SHANG Mengchao, GAO Xiyu, LIU Guichang, SUN Wen. Effect of Inherent Films Resulted from Manufacturing Process on Corrosion of B30 Cu-Ni Alloy[J]. 中国腐蚀与防护学报, 2025, 45(6): 1575-1588.
[8] HUANG Zebang, LIU Guangming, FAN Wenxue, XU Ruizhong, ZHU Yanbin, LIU Chenhui. Effect of Passivation Time on Corrosion Resistance of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(6): 1741-1747.
[9] HE Yan, LIU Yan, TIAN Hua, CHEN Ye. Effect of Low Temperature Diffusion Pretreatment on Precipitation of Phases During Post-aging Treatment for B-containing S31254 Super Austenitic Stainless Steel and its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2025, 45(6): 1773-1778.
[10] TONG Xiangyu, XU Weichen, WANG Xiutong, WANG Youqiang, DUAN Jizhou. Summary on Effect of Weling Techniques on Microstructure and Mechanical Properties of TC4 Ti-alloy Weld Joints[J]. 中国腐蚀与防护学报, 2025, 45(5): 1161-1174.
[11] GUO Yaowei, AI Shimin, FANG Daran, LIN Xiaoping, YANG Lianwei, ZHENG Zhehao. Microstructure and Corrosion Resistance of High-pressure Solidified Mg-xAl (x = 3, 5, 7, 9, 12) Alloys[J]. 中国腐蚀与防护学报, 2025, 45(5): 1265-1276.
[12] FENG Yuqin, GUO Tonghan, YU Weihan, WU Wei, ZHANG Daquan. Influence of Sb on Corrosion Behavior of High-strength Structural Steels Exposed to Atmosphere at East Coast Region[J]. 中国腐蚀与防护学报, 2025, 45(5): 1300-1308.
[13] LI Ping, SHI Huijie, PEI Jibin, WANG Zijian, CAO Tieshan, CHENG Congqian, ZHAO Jie. Impact of Nanosecond Pulsed Laser Irradiation on Electrochemical Corrosion Behavior of 17-4PH Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(5): 1417-1424.
[14] ZHANG Xiongbin, DANG En, YU Xiaojing, TANG Yufei, ZHAO Kang. Research Status and Progress on Corrosion Performance of Super Martensitic Stainless Steel for Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[15] SUN Fanghong, REN Yanjie, SONG Wenqing. Research Status and Progress of Laser Clad Coatings on 42CrMo Steel[J]. 中国腐蚀与防护学报, 2025, 45(4): 849-858.
No Suggested Reading articles found!