Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2026, Vol. 46 Issue (1): 15-24    DOI: 10.11902/1005.4537.2025.288
Current Issue | Archive | Adv Search |
Research Progress on Corrosion of Additively Manufactured Alloys Applied in Nuclear Energy Field
DAI Nianwei1,2(), DOU Xinyi1, LIU Huajian1, LENG Bin1,2
1.Division of Materials Research, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.State Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, China
Cite this article: 

DAI Nianwei, DOU Xinyi, LIU Huajian, LENG Bin. Research Progress on Corrosion of Additively Manufactured Alloys Applied in Nuclear Energy Field. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 15-24.

Download:  HTML  PDF(8332KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Additive manufacturing (AM) technologies, including laser powder bed fusion (LPBF), directed energy deposition (DED), and wire arc additive manufacturing (WAAM), have started a revolution in materials manufacturing due to their significant advantages such as high precision, high processing efficiency, capability for complex structures and material cost savings. These technologies demonstrate immense application potential in nuclear energy sectors, particularly in fabricating critical alloy components such as reactor cores, fuel claddings and advanced heat exchangers. However, the extreme environments within reactor systems including high temperatures, high pressures, radiation and highly corrosive media, put forward strict demands on the service performance of additively manufactured alloys. Among others, the corrosion resistance of alloys has become a primary focus of concern. This review summarizes recent research progress on corrosion behavior in simulated nuclear conditions of typical additively manufactured alloys, such as stainless steels, FeCrAl alloys and complex composition alloys etc. It comparatively examines the differences between AM alloys and conventionally forged counterparts, analyzing the influence of microstructural characteristics on corrosion mechanisms. Furthermore, the application prospects of additively manufactured alloys in future advanced nuclear energy systems are discussed.

Key words:  additive manufacturing      nuclear energy      corrosion behavior      microstructure      localized corrosion      stress corrosion     
Received:  11 September 2025      32134.14.1005.4537.2025.288
ZTFLH:  TG147  
Fund: National Natural Science Foundation of China(12425511)

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.288     OR     https://www.jcscp.org/EN/Y2026/V46/I1/15

Fig.1  Typical microstructures of LPBF-316L stainless steel:(a, b) optical microscopy and scanning electron microscope (SEM) images of melt pools, (c) SEM image of pores, (d, e) inverse pole figure (IPF) maps of conventional and LPBF 316L stainless steel, (f, g) transmission electron microscope (TEM) images of subgrains and dislocation networks[13,22]
Fig.2  Microstructural anisotropy (a-e) and differences in tensile cracking behavior before and after HIP treatment (f-h) in LPBF-316L stainless steel[26]
Fig.3  Microstructures and corresponding corrosion characteristics of AM-produced FeCrAl and ODS-FeCrAl alloys in LBE: (a) longitudinal and transverse microstructures of PM C26M and APMT2 alloys, (b-g) SEM and focused ion beam (FIB) analysis of AMC26M samples after 12 months immersion in three autoclaves, (h-k) backscattered electron (BSE) images, IPF, band contrast and grain boundaries overlaid maps of ODS, (l) FIB thin foil for ODS, (m) high-angle annular dark-field (HADDF) image of oxide layer, (n) bright field (BF)-TEM image corresponding to Fig.3m, (o) HADDF image corresponding to Fig.3m and energy dispersive spectrometer (EDS) mappings[35,42]
[1] Yang J, Sun P J, Peng C T, et al. Frontiers and review in global nuclear energy science and technology [J]. Sci. Technol. Rev., 2024, 42: 7
doi: 10.3981/j.issn.1000-7857.2023.04.00630
杨 军, 孙培杰, 彭翠婷 等. 世界核能科技发展前沿进展 [J]. 科技导报, 2024, 42: 7
[2] Xu H J, Dai Z M, Cai X Z. Introduction to Molten Salt Reactor Science and Technology [M]. Shanghai: Shanghai Jiao Tong University Press, 2025
徐洪杰, 戴志敏, 蔡翔舟. 熔盐堆科学技术导论 [M]. 上海: 上海交通大学出版社, 2025
[3] Grape S, Svärd S J, Hellesen C, et al. New perspectives on nuclear power-generation IV nuclear energy systems to strengthen nuclear non-proliferation and support nuclear disarmament [J]. Energy Policy, 2014, 73: 815
doi: 10.1016/j.enpol.2014.06.026
[4] Zhu S Y, Yuan D Q. Study of radiation properties of structural materials for advanced nuclear energy systems [J]. Nucl. Phys. Rev., 2017, 34: 302
朱升云, 袁大庆. 先进核能系统结构材料辐照性能研究 [J]. 原子核物理评论, 2017, 34: 302
[5] Allen T R, Sridharan K, Tan L, et al. Materials challenges for generation IV nuclear energy systems [J]. Nucl. Technol., 2008, 162: 342
doi: 10.13182/NT08-A3961
[6] Wang H M, Wang Y D. Progress of laser additive manufactured high-performance metal structural materials [J]. Iron Steel Vanadium Titanium, 2024, 45: 1
王华明, 王玉岱. 高性能金属结构材料激光增材制造技术研究进展 [J]. 钢铁钒钛, 2024, 45: 1
[7] Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
[8] Zhao R R, Li J F. Research on laser metal 3D printing technology [J]. China Met. Bull., 2024: 107
赵瑞瑞, 李佳峰. 激光金属3D打印技术探究 [J]. 中国金属通报, 2024: 107
[9] Yu H. Exploration and research on metal 3D printing technology process [J]. Mod. Manuf. Technol. Equip., 2023, 59: 162
玉 河. 金属3D打印技术工艺探索研究 [J]. 现代制造技术与装备, 2023, 59: 162
[10] Blakey-Milner B, Gradl P, Snedden G, et al. Metal additive manufacturing in aerospace: A review [J]. Mater. Des., 2021, 209: 110008
doi: 10.1016/j.matdes.2021.110008
[11] Patel S, Liu Y, Siddique Z, et al. Metal additive manufacturing: Principles and applications [J]. J. Manuf. Process., 2024, 131: 1179
doi: 10.1016/j.jmapro.2024.09.101
[12] Akbari P, Zamani M, Mostafaei A. Machine learning prediction of mechanical properties in metal additive manufacturing [J]. Addit. Manuf., 2024, 91: 104320
[13] He W H, Liu Y, Yang S Y, et al. Effect of sensitization treatment on electrochemical behavior and intergranular corrosion of conventional and additively manufactured 316L stainless steels [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1331
何武豪, 刘 阳, 杨思懿 等. 敏化处理对传统和增材制造316L不锈钢电化学和晶间腐蚀的影响 [J]. 中国腐蚀与防护学报, 2025, 45: 1331
doi: 10.11902/1005.4537.2024.387
[14] Dong C F, Kong D C, Zhang L. Corrosion of Metals Fabricated by Additive Manufacturing [M]. Beijing: Chemical Industry Press, 2021: 314
董超芳, 孔德成, 张 亮. 增材制造金属的腐蚀行为与机理 [M]. 北京: 化学工业出版社, 2021: 314
[15] Dai N W, Zhang L C, Zhang J X, et al. Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution [J]. Corros. Sci., 2016, 102: 484
doi: 10.1016/j.corsci.2015.10.041
[16] Zhong Y, Rännar L E, Liu L F, et al. Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications [J]. J. Nucl. Mater., 2017, 486: 234
doi: 10.1016/j.jnucmat.2016.12.042
[17] Shi J H, Liu H Q, Liu Z P, et al. Low-cycle fatigue behavior of nuclear-grade austenitic stainless steel fabricated by additive manufacturing [J]. Crystals, 2025, 15: 644
doi: 10.3390/cryst15070644
[18] Yang Q F, Gao S X, Chen P, et al. Current research status of additive manufacturing of 316L stainless steel powder for nuclear power [J]. J. Netshape Form. Eng., 2023, 15: 209
杨青峰, 高士鑫, 陈 平 等. 核电用316L不锈钢粉末增材制造研究现状 [J]. 精密成形工程, 2023, 15: 209
[19] Li C, Wang Q T, Yang C G, et al. Corrosion behavior of 904L super-austenitic stainless steel in simulated primary water in nuclear power plants [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 716
李 禅, 王庆田, 杨承刚 等. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 716
[20] Xu C L, Quan Q W, Wu H C, et al. Review of the effect of irradiation-assisted stress corrosion cracking on stainless steel in light water reactor environments [J/OL]. Mater. Rep., (2025-06-30).
徐超亮, 全琪炜, 武焕春 等. 轻水反应堆环境对不锈钢辐照促进应力腐蚀开裂影响综述 [J/OL]. 材料导报, (2025-06-30).
[21] Gao J X, Cao H, Kuang W J, et al. Research progress on irradiation assisted stress corrosion cracking behavior and mechanism of austenitic steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 835
高俊宣, 曹 晗, 匡文军 等. 奥氏体钢辐照促进应力腐蚀开裂行为机制的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 835
doi: 10.11902/1005.4537.2023.287
[22] Tucho W M, Lysne V H, Austbø H, et al. Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L [J]. J. Alloy. Compd., 2018, 740: 910
doi: 10.1016/j.jallcom.2018.01.098
[23] Liverani E, Toschi S, Ceschini L, et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel [J]. J. Mater. Process. Technol., 2017, 249: 255
doi: 10.1016/j.jmatprotec.2017.05.042
[24] Goland M, Balbaud F, Fouchereau A, et al. Corrosion behavior of additively manufactured stainless steels in nuclear environments [J]. Adv. Mater. Technol. Power Plants, 2024: 23
[25] Bozeman S C, Tucker J D, Isgor O B. Corrosion of proton irradiated 309L stainless steel claddings fabricated by directed energy deposition [A]. Proceedings of the AMPP Annual Conference + Expo [C]. Denver, 2023
[26] Rebak R B, Lou X Y. Environmental cracking and irradiation resistant stainless steels by additive manufacturing [R]. Schenectady: General Electric Company, 2018
[27] Yang J F, Hawkins L, He L F, et al. Intragranular irradiation-assisted stress corrosion cracking (IASCC) of 316L stainless steel made by laser direct energy deposition additive manufacturing: Delta ferrite-dislocation channel interaction [J]. J. Nucl. Mater., 2023, 577: 154305
doi: 10.1016/j.jnucmat.2023.154305
[28] McMurtrey M, Sun C, Rupp R E, et al. Investigation of the irradiation effects in additively manufactured 316L steel resulting in decreased irradiation assisted stress corrosion cracking susceptibility [J]. J. Nucl. Mater., 2021, 545: 152739
doi: 10.1016/j.jnucmat.2020.152739
[29] Chen Y, Alexandreanu B, Zhang X. Microtructure and low-cycle fatigue behavior of additively manufactured 316L stainless steel at 300 oC [R]. DuPage County: Argonne National Laboratory, 2023
[30] Bojinov M, Chang L T, Saario T, et al. Corrosion of 316L stainless steel produced by laser powder bed fusion and powder metallurgy in pressurized water reactor primary coolant [J]. Materialia, 2024, 34: 102055
doi: 10.1016/j.mtla.2024.102055
[31] Zhang L B, Wang H, Zhao K, et al. Corrosion behavior of 304L stainless steel by wire arc additive manufacturing in liquid lead-bismuth eutectic at 550 oC [J]. J. Nucl. Mater., 2025, 605: 155598
doi: 10.1016/j.jnucmat.2024.155598
[32] Gong X, Wan L, Gao M X, et al. Atomic-scale dissolution corrosion mechanism of additively-manufactured 316L steels in liquid lead-bismuth eutectic [J]. Acta Mater., 2025, 290: 120963
doi: 10.1016/j.actamat.2025.120963
[33] Pei J Y, Chen H, Zhang R Q. Study on the microstructure and nano-hardness evolution of FeCrAl alloy under ion irradiation [J]. Nucl. Power Eng., 2025, 46(suppl.): 145
裴静远, 陈 寰, 张瑞谦. FeCrAl合金离子辐照下微观结构与纳米硬度演化研究 [J]. 核动力工程, 2025, 46(): 145
[34] Hoffman A K, Umretiya R V, Gupta V K, et al. Oxidation resistance in 1200 oC steam of a FeCrAl alloy fabricated by three metallurgical processes [J]. JOM, 2022, 74: 1690
doi: 10.1007/s11837-022-05209-z
[35] Umretiya R V, Qu H Z, Yin L, et al. Corrosion behavior of additively manufactured FeCrAl in out-of-pile light water reactor environments [J]. npj Mater. Degrad., 2024, 8: 88
doi: 10.1038/s41529-024-00499-x
[36] Hosemann P, Frazer D, Stergar E, et al. Twin boundary-accelerated ferritization of austenitic stainless steels in liquid lead-bismuth eutectic [J]. Scr. Mater., 2016, 118: 37
doi: 10.1016/j.scriptamat.2016.02.029
[37] Lambrinou K, Charalampopoulou E, Van Der Donck T, et al. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 oC [J]. J. Nucl. Mater., 2017, 490: 9
doi: 10.1016/j.jnucmat.2017.04.004
[38] Shi X M, Tan J B, Zhang Z Y, et al. A review on fatigue behavior of candidate structure materials for lead-cooled fast reactors in liquid lead-bismuth eutectic [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1187
史轩铭, 谭季波, 张兹瑜 等. 铅冷快堆候选结构材料液态铅铋共晶环境中疲劳行为研究进展 [J]. 中国腐蚀与防护学报, 2025, 45: 1187
doi: 10.11902/1005.4537.2024.358
[39] Zhang X Y, Li C, Wang Y X, et al. Research progress on liquid metal corrosion behavior of structural steels for lead fast reactor [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1216
张心怡, 李 聪, 汪禹熙 等. 铅基堆结构材料液态金属腐蚀行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1216
doi: 10.11902/1005.4537.2022.338
[40] Zhu Z G, Tan J B, Zhang Z Y, et al. Corrosion behaviors of ODS-FeCrAl in oxygen-saturated lead-bismuth eutectic at 550 oC: Effects of grain boundaries and minor elements [J]. J. Nucl. Mater., 2023, 587: 154710
doi: 10.1016/j.jnucmat.2023.154710
[41] Wang H R, Yu H, Liu J R, et al. Characterization and corrosion behavior of Al-added high Mn ODS austenitic steels in oxygen-saturated lead-bismuth eutectic [J]. Corros. Sci., 2022, 209: 110818
doi: 10.1016/j.corsci.2022.110818
[42] Li J S, Wang Y F, Chai J J, et al. Additive manufactured ODS-FeCrAl steel achieves high corrosion resistance in lead-bismuth eutectic (LBE) [J]. J. Nucl. Mater., 2025, 604: 155516
doi: 10.1016/j.jnucmat.2024.155516
[43] Couet A. Integrated high-throughput research in extreme environments targeted toward nuclear structural materials discovery [J]. J. Nucl. Mater., 2022, 559: 153425
doi: 10.1016/j.jnucmat.2021.153425
[44] Chen J, Zhou X Y, Wang W L, et al. A review on fundamental of high entropy alloys with promising high-temperature properties [J]. J. Alloy. Compd., 2018, 760: 15
doi: 10.1016/j.jallcom.2018.05.067
[45] Lin Y P, Yang T F, Lang L, et al. Enhanced radiation tolerance of the Ni-Co-Cr-Fe high-entropy alloy as revealed from primary damage [J]. Acta Mater., 2020, 196: 133
doi: 10.1016/j.actamat.2020.06.027
[46] Xu Z L, Zhang H, Du X J, et al. Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing [J]. Corros. Sci., 2020, 177: 108954
doi: 10.1016/j.corsci.2020.108954
[47] Ren J, Mahajan C, Liu L, et al. Corrosion behavior of selectively laser melted CoCrFeMnNi high entropy alloy [J]. Metals, 2019, 9: 1029
doi: 10.3390/met9101029
[48] Peng H P, Lin Z H, Li R D, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy- a comparison between selective laser melting and cast [J]. Front. Mater., 2020, 7: 244
doi: 10.3389/fmats.2020.00244
[1] LAN Botao, WU Bin, MING Hongliang, WANG Jianqiu, HAN En-Hou. Research Progress of Stress Corrosion Crack Behavior of Selected Laser Melted Austenitic Stainless Steel in High Temperature Pressurized Water[J]. 中国腐蚀与防护学报, 2026, 46(1): 1-14.
[2] ZHOU Li, CAO Xiaodie, LAI Youbin, DING Wangwang, WEI Boxin, WU Jiajun. Research Progress in Influence of Heat Treatment on Corrosion Behavior of Additive Manufactured Parts[J]. 中国腐蚀与防护学报, 2026, 46(1): 37-48.
[3] YI Junda, LENG Ao, GONG Delun, WEI Boxin. Microstructureand Properties of Low Modulus Corrosion-resistant Metastable β-Ti Alloy Prepared by Electron Beam Melting[J]. 中国腐蚀与防护学报, 2026, 46(1): 49-59.
[4] ZHANG Junnan, PENG Can, FU Qi, ZHANG Liang, SONG Guangling. Influence of Pseudomonas Aeruginosa on Corrosion Behavior of Additively Manufactured Al-Mg-Sc-Zr Alloy in Marine Environment[J]. 中国腐蚀与防护学报, 2026, 46(1): 60-70.
[5] ZHU Dingding, ZHAO Xiya, ZHANG Xiaomei, MEI Ziqi, LU Wenjun, WANG Shuai. Comparative Characterization of Microstructure and High-temperature Oxidation Behavior of Additive Manufacturing and Casting TiAl Alloy[J]. 中国腐蚀与防护学报, 2026, 46(1): 71-80.
[6] SU Baoxian, GAO Ruxin, ZHU Guoqiang, JIANG Botao, WANG Binbin, LIU Chen, YU Yongsheng, WANG Liang, SU Yanqing. Effects of Post Heat Treatment on Microstructure and Corrosion Behavior of Ti-6Al-3Nb-2Zr-1Mo Alloy Fabricated by Electron Beam Freeform Fabrication[J]. 中国腐蚀与防护学报, 2026, 46(1): 81-91.
[7] ZHANG Zequn, LUO Xinjie, LIU Pengfei, DONG Kai, ZHUO Xianqin, WU Junsheng, ZHANG Bowei. Influence of TiC Particles on Microstructure and Corrosion Performance of Laser Powder Bed Fusion Al-Mg-Sc-Zr Alloy[J]. 中国腐蚀与防护学报, 2026, 46(1): 92-102.
[8] ZHOU Xiaobao, WANG Ziteng, REN Yanjie, DONG Shaoyang, GAN Lang, LI Cong. Hot Corrosion Behavior of CoCrNi Medium-entropy Alloys Fabricated by Laser Powder Bed Fusion[J]. 中国腐蚀与防护学报, 2026, 46(1): 115-125.
[9] LI Kexuan, WANG Yipeng, LIAO Bokai. Comparative Study on Passive Behavior of Wire Arc Additive Manufactured, Selective Laser Melted, and Conventional TC4 Ti-alloys[J]. 中国腐蚀与防护学报, 2026, 46(1): 186-192.
[10] YANG Xiaowen, CHEN Zehao, YANG Shasha, WANG Qunchang, WANG Jinlong, CHEN Minghui, WANG Fuhui. Short-term Hot Corrosion Behavior of Nickel-based Single Crystal Superalloy N5 and its Nanocrystalline Coating[J]. 中国腐蚀与防护学报, 2026, 46(1): 252-260.
[11] WANG Lifang, SHANG Mengchao, GAO Xiyu, LIU Guichang, SUN Wen. Effect of Inherent Films Resulted from Manufacturing Process on Corrosion of B30 Cu-Ni Alloy[J]. 中国腐蚀与防护学报, 2025, 45(6): 1575-1588.
[12] ZHANG Deping, YAN Lizhen, YU Yang, YANG Guangming, DAI Chunyu, MEGN Le, XU Bo, LIU Zhiyong. Fracture Failure Mechanism of N80 Tubing in Sophisticated CO2 Flooding Production Well Environment[J]. 中国腐蚀与防护学报, 2025, 45(6): 1698-1708.
[13] LI Ke, LI Tianlei, CAO Xiaoyan, JIANG Liu, WANG Yaxi, XIAO Zeyu, ZHONG Xiankang. Corrosion Behavior of 316L Stainless Steel Welded Joints in S-H2S-containing Environments[J]. 中国腐蚀与防护学报, 2025, 45(6): 1725-1733.
[14] TONG Xiangyu, XU Weichen, WANG Xiutong, WANG Youqiang, DUAN Jizhou. Summary on Effect of Weling Techniques on Microstructure and Mechanical Properties of TC4 Ti-alloy Weld Joints[J]. 中国腐蚀与防护学报, 2025, 45(5): 1161-1174.
[15] LIU Penghe, XUE Lili, XU Likun, XIN Yonglei, GUO Mingshuai, ZHOU Shuai, DUAN Tigang. Effect of Hydrogen Pre-charging for Ti-substrate on Microstructure and Electrochemical Properties of Ti/RuO2-IrO2-TiO2 Anode[J]. 中国腐蚀与防护学报, 2025, 45(5): 1277-1288.
No Suggested Reading articles found!