|
|
|
| Influence of Al-content on Corrosion Resistance of Alumina-forming Austinite Steel in Molten Pb-Bi Alloy Eutectic |
ZHOU Hongtao1,2, WANG Linlin1, WANG Min2,3( ), WANG Ping1, MA Yingche2,3 |
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2 Key Laboratory of Nuclear Materials and Safety Evaluation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
ZHOU Hongtao, WANG Linlin, WANG Min, WANG Ping, MA Yingche. Influence of Al-content on Corrosion Resistance of Alumina-forming Austinite Steel in Molten Pb-Bi Alloy Eutectic. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1563-1574.
|
|
|
Abstract To enhance the corrosion resistance of austenitic stainless steel in molten Pb-Bi alloy eutectic, herein, hot-rolled plates of alumina-forming austinite (AFA) steels with varying Al contents (3.5%-4.5%, mass fraction) are made and pre-oxidized in air at 800 oC for 20 h. Then their corrosion performance was comparatively assessed in oxygen-saturated Pb-Bi alloy eutectic at 600 oC up to 10,000 h via static immersion test, surface and cross-sectional morphology observations, along with compositional analysis of the formed oxide scales. Results demonstrate that the corrosion resistance to molten Pb-Bi alloy eutectic of AFA steel increases with the increasing Al content, especially, the steel with 4.5%Al exhibits superior corrosion resistance with a damage area ratio less than 20% for its pre-formed Al2O3 scale. In fact, this phenomenon may be ascribed to that during the long-term corrosion process, due to the existence of weak local spots within the pre-formed Al2O3 scale, where micro-defects will be generated, at the same time, the NbC particles on the surface may be oxidized to Nb2O5, which can further induce microcracks in the surrounding Al2O3 film. These provides a rapid pathway for the inter-diffusion of alloying elements and O, leading to localized internal oxidation and causing the pre-formed Al2O3 scale to be damaged. The findings reveal the critical mechanisms governing long-term corrosion performance of the pre-oxidized AFA steels in molten Pb-Bi alloy eutectic cooled nuclear systems.
|
|
Received: 20 February 2025
32134.14.1005.4537.2025.058
|
|
|
| Fund: CNNC 2023 Young Talents Research Project and Strategic Pilot Project of Chinese Academy of Sciences(XDA041030101) |
Corresponding Authors:
WANG Min, E-mail: minwang@imr.ac.cn
|
| [1] |
Wu Y C, Team FDS. The prospect of lead-based reactors in the fourth generation nuclear power system [J]. Sci. Technol. Rev., 2015, 33(14): 12, 3
|
|
(吴宜灿, FDS团队. 第四代核能系统铅基反应堆前景展望 [J]. 科技导报, 2015, 33(14): 12, 3)
|
| [2] |
Wang G F, Liu H, Wang D D, et al. High-quality energy development and energy security under the new situation for China [J]. Bulletin of Chinese Academy of Sciences, 2023, 38: 23
|
|
(王国法, 刘 合, 王丹丹 等. 新形势下我国能源高质量发展与能源安全 [J]. 中国科学院院刊, 2023, 38: 23)
|
| [3] |
Alemberti A, Smirnov V, Smith C F, et al. Overview of lead-cooled fast reactor activities [J]. Prog. Nucl. Energ., 2014, 77: 300
|
| [4] |
Jiang H Y, Zhao X Y, Cao S, et al. Effect of Y2O3 addition on the microstructure and liquid LBE cavitation erosion behaviors of Fe-Cr-Al-Ti-C-xY2O3 laser clade coatings [J]. J. Nucl. Mater., 2022, 572: 154030
|
| [5] |
Schroer C, Wedemeyer O, Novotny J, et al. Selective leaching of nickel and chromium from Type 316 austenitic steel in oxygen-containing lead-bismuth eutectic (LBE) [J]. Corros. Sci., 2014, 84: 113
|
| [6] |
Wang J M, Arjmand F, Du D H, et al. Electrochemical corrosion behaviors of 316 L stainless steel used in PWR primary pipes [J]. Chin. J. Eng., 2017, 39: 1355
|
|
(汪家梅, Arjmand F, 杜东海 等. 压水堆一回路主管道316L不锈钢的电化学腐蚀行为 [J]. 工程科学学报, 2017, 39: 1355)
|
| [7] |
Zhu Z G, Zhang Q, Tan J B, et al. Corrosion behavior of T91 steel in liquid lead-bismuth eutectic at 550 oC: Effects of exposure time and dissolved oxygen concentration [J]. Corros. Sci., 2022, 204: 110405
|
| [8] |
Lambrinou K, Koch V, Coen G, et al. Corrosion scales on various steels after exposure to liquid lead-bismuth eutectic [J]. J. Nucl. Mater., 2014, 450: 244
|
| [9] |
Zhao X, Chen Y X, Zeng X, et al. Heat-treatment optimization and heavy liquid metal compatibility of Si-enriched F/M steel for LFR structure application [J]. Chin. J. Eng., 2020, 42: 1488
|
|
(赵 熹, 陈映雪, 曾 献 等. 一种铅基快堆用高硅不锈钢的热处理工艺优化及铅铋相容性研究 [J]. 工程科学学报, 2020, 42: 1488)
|
| [10] |
Chen L Z, He Y J, Fu X G, et al. Research progress on the corrosion resistance of alumina forming austenitic steel in lead-based liquid metals [J]. Mater. Rep., 2023, 37(): 421
|
|
(陈灵芝, 和雅洁, 付晓刚 等. 新型含铝奥氏体合金的耐铅基液态金属腐蚀性能研究进展 [J]. 材料导报, 2023, 37(): 421)
|
| [11] |
Zhao R L, Jia H D, Cao S G, et al. Microstructure and mechanical properties of 15Ni-15Cr oxide dispersion strengthened austenitic steel [J]. Chin. J. Eng., 2023, 45: 107
|
|
(赵瑞林, 贾皓东, 曹书光 等. 15Ni-15Cr ODS钢的微观结构与力学性能 [J]. 工程科学学报, 2023, 45: 107)
|
| [12] |
Zhang J S. A review of steel corrosion by liquid lead and lead-bismuth [J]. Corros. Sci., 2009, 51: 1207
|
| [13] |
Zhang J S, Li N. Review of the studies on fundamental issues in LBE corrosion [J]. J. Nucl. Mater., 2008, 373: 351
|
| [14] |
Klok O, Lambrinou K, Gavrilov S, et al. Effect of deformation twinning on dissolution corrosion of 316L stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 oC [J]. J. Nucl. Mater., 2018, 510: 556
|
| [15] |
Heinzel A, Weisenburger A, Müller G. Corrosion behavior of austenitic steels in liquid lead bismuth containing 10-6 wt.% and 10-8 wt.% oxygen at 400-500 oC [J]. J. Nucl. Mater., 2014, 448: 163
|
| [16] |
Zhang X Y, Li C, Wang Y X, et al. Research progress on liquid metal corrosion behavior of structural steels for lead fast reactor [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1216
|
|
(张心怡, 李 聪, 汪禹熙 等. 铅基堆结构材料液态金属腐蚀行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1216)
|
| [17] |
Shi X M, Tan J B, Zhang Z Y, et al. A review on fatigue behavior of candidate structure materials for lead-cooled fast reactors in liquid lead-bismuth eutectic [J]. J. Chin. Soc. Corros. Prot., 2025, 45 (5): 1187
|
|
(史轩铭, 谭季波, 张兹瑜 等. 铅冷快堆候选结构材料液态铅铋共晶环境中疲劳行为研究进展 [J]. 中国腐蚀与防护学报, 2025, 45 (5): 1187)
|
| [18] |
Tsisar V, Schroer C, Wedemeyer O, et al. Long-term corrosion of austenitic steels in flowing LBE at 400 oC and 10-7 mass% dissolved oxygen in comparison with 450 and 550 oC [J]. J. Nucl. Mater., 2016, 468: 305
|
| [19] |
Barbier F, Benamati G, Fazio C, et al. Compatibility tests of steels in flowing liquid lead-bismuth [J]. J. Nucl. Mater., 2001, 295: 149
|
| [20] |
Tsisar V, Schroer C, Wedemeyer O, et al. Corrosion behavior of austenitic steels 1.4970, 316L and 1.4571 in flowing LBE at 450 and 550 oC with 10-7 mass% dissolved oxygen [J]. J. Nucl. Mater., 2014, 454: 332
|
| [21] |
Yamamoto Y, Brady M P, Lu Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels [J]. Science, 2007, 316: 433
|
| [22] |
Brady M P, Yamamoto Y, Santella M L, et al. The development of alumina-forming austenitic stainless steels for high-temperature structural use [J]. JOM, 2008, 60: 12
|
| [23] |
Tsisar V, Stergar E, Gavrilov S, et al. Effect of variation in oxygen concentration in static Pb-Bi eutectic on long-term corrosion performance of Al-alloyed austenitic steels at 500 oC [J]. Corros. Sci., 2022, 195: 109963
|
| [24] |
Shen L, Cao G Q, Lang D, et al. Fe-14Ni-14Cr-2.5Al steel showing excellent corrosion-resistance in flowing LBE at 550 oC and high temperature strength [J]. J. Nucl. Mater., 2023, 587: 154703
|
| [25] |
Gao Q Z, Liu Z Y, Li H J, et al. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling [J]. J. Mater. Sci. Technol., 2021, 68: 91
|
| [26] |
Wu Y, Xie A, Chen S H, et al. Corrosion behavior of NbC and its effect on corrosion layer formation in liquid lead-bismuth eutectic of Nb-containing austenitic stainless steel [J]. Acta Metall. Sin., 2025, 61: 287
|
|
(吴 炀, 谢 昂, 陈胜虎 等. 含Nb奥氏体不锈钢中NbC的液态Pb-Bi共晶腐蚀行为及其对氧化层形成的影响 [J]. 金属学报, 2025, 61: 287)
|
| [27] |
Xu G F, Li Y, Lei Y C, et al. Effect of relative flow velocity on corrosion behavior of high nitrogen austenitic stainless steel in liquid lead-bismuth eutectic alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 899
|
|
(徐桂芳, 李 园, 雷玉成 等. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 899)
|
| [28] |
Zhu Z G, Tan J B, Wu X Q, et al. Corrosion behaviors of FeCrAl alloys exposed to oxygen-saturated static lead bismuth eutectic at 550 oC [J]. Corros. Sci., 2022, 209: 110767
|
| [29] |
Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of an Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy at 470 oC (Part II) [J]. Corros. Sci., 2008, 50: 2537
|
| [30] |
Popovic M P, Chen K, Shen H, et al. A study of deformation and strain induced in bulk by the oxide layers formation on a Fe-Cr-Al alloy in high-temperature liquid Pb-Bi eutectic [J]. Acta Mater., 2018, 151: 301
|
| [31] |
Gong X, Short M P, Auger T, et al. Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors [J]. Prog. Mater. Sci., 2022, 126: 100920
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|