Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2026, Vol. 46 Issue (1): 126-136    DOI: 10.11902/1005.4537.2025.218
Current Issue | Archive | Adv Search |
Effect of WC Content on Wear and Corrosion Performance of Laser Cladding AlCoCrFeNi2.1 Eutectic High-entropy Alloy Coating
DING Hao1, DU Lingxiao1, SHU Qin2, CAO Fuyang3, XIE Yun1(), PENG Xiao1
1.School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.Liyang Aero Power Co., Ltd., Aero Engine Corporation of China, Guiyang 550014, China
3.School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
Cite this article: 

DING Hao, DU Lingxiao, SHU Qin, CAO Fuyang, XIE Yun, PENG Xiao. Effect of WC Content on Wear and Corrosion Performance of Laser Cladding AlCoCrFeNi2.1 Eutectic High-entropy Alloy Coating. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 126-136.

Download:  HTML  PDF(19178KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To investigate the effect of WC contents on the wear and corrosion performance of laser claddings of high-entropy eutectic alloy AlCoCrFeNi2.1, i.e. AlCoCrFeNi2.1-WC x with WC contents of 0%, 10%, 30%, and 50% respectively were fabricated on the surface of 45# steel by laser cladding technologywith a dual powder feeding system. The influence of WC content on the microstructure, microhardness, wear resistance, and corrosion resistance of the coatings was systematically studied. The results show that the addition of WC promoted the formation of metal carbides such as WC, W2C and η phases in the coatings, in addition to the original existed FCC and BCC phases. With the increasing WC content, the volume fractions of hard carbide phases increased, leading to a significant enhancement in microhardness of the composite coatings. The AlCoCrFeNi2.1-WC50 coating exhibited the highest microhardness of 775.8 HV0.2, approximately 3.8 times that of 45# steel matrix. Moreover, the wear resistance was markedly enhanced with the increasingWC content, and correspondingly the wear rate decreased from 1.3 × 10-3 mm3·N-1·m-1 for the WC-free AlCoCrFeNi2.1 coating to 8.6 × 10-6 mm3·N-1·m-1 for the AlCoCrFeNi2.1-WC50 coating. However, a higher WC content led to increase the emerging of galvanic corrosion between different phases in the coating, thereby deteriorating the corrosion resistance. Comprehansively considering the microhardness, wear resistance and corrosion resistance, the AlCoCrFeNi2.1-WC30 coating exhibited the best comprehensive properties, featured with a good combination of wear resistance and corrosion resistance, and can be viewed as a promising material for engineering application.

Key words:  high-entropy alloy coatings      laser cladding      WC particle      wear resistance      corrosion resistance     
Received:  09 July 2025      32134.14.1005.4537.2025.218
ZTFLH:  TG174  
Fund: Jiangxi Provincial Key Research and Development Program(20232BBE50007);Jiangxi Provincial Natural Science Foundation(20224BAB214018)

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.218     OR     https://www.jcscp.org/EN/Y2026/V46/I1/126

Fig.1  SEM morphologies (a, b) and particle size distribution (c, d) of AlCoCrFeNi2.1 (a, c) and WC powders (b, d)
Fig.2  Schematic diagram of synchronous powder feeding experiment
CoatingFeeding rate of WC powder / g·min-1Feeding rate of HEA powder / g·min-1
HEA02.3
WC1012.3
WC303.82.3
WC506.42.3
Table 1  Feeding rates of WC and HEA powders for preparing AlCoCrFeNi2.1-WC x coatings
Fig.3  XRD patterns of AlCoCrFeNi2.1-WC x composite coatings (a) and corresponding details (b)
Fig.4  Cross-sectional SEM morphologies of HEA (a), WC10 (b), WC30 (c) and WC50 (d) coatings
PhaseCoatingAlCoFeCrNiW
BCCHEA (A1)23.512.919.112.432.1-
WC10 (B1)23.711.720.010.132.81.6
WC30 (C1)24.410.722.28.632.81.3
WC50 (D1)27.311.417.66.835.11.6
FCCHEA (A2)15.516.125.613.529.3-
WC10 (B2)14.114.628.811.529.01.9
WC30 (C2)13.915.025.411.129.84.7
WC50 (D2)14.215.122.812.932.52.3
ηWC10 (B3)5.69.327.836.213.57.7
WC30 (C3)6.211.624.123.015.419.7
WC50 (D3)7.910.928.715.817.419.3
Table 2  Distribution of elements in BCC phase, FCC phase, η phase and transition layer
Fig.5  Cross-sectional microhardness distribution of AlCoCrFeNi2.1-WC x composite coatings
Fig.6  Friction and wear properties of 45# steel and AlCoCrFeNi2.1-WC x composite coatings: (a) friction coefficient curves, (b) average friction coefficient, (c) wear scar profile curves, (d) wear rates
Fig.7  SEM morphologies of wear scar of AlCoCrFeNi₂.₁-WC composite coatings: (a) HEA coatings, (b) WC10, (c) WC30, WC50 (d) coatings
RegionAlCoFeCrNiWO
A10.68.239.58.118.0-15.5
B1.31.043.01.81.70.650.5
C0.40.336.01.30.80.360.9
D--36.51.28.80.262.1
Table 3  EDS results of the marked regions in Fig.7
SampleEcorr / mVIcorr / A·cm-2
45#-5768.4 × 10-6
304 steel-2331.8 × 10-7
HEA-2051.1 × 10-7
WC10-2682.8 × 10-7
WC30-2854.1 × 10-7
WC50-3532.0 × 10-6
Table 4  Electrochemical corrosion parameters of 45# steel and AlCoCrFeNi2.1-WC x composite coatings in 3.5%NaCl solution
Fig.8  Potentiodynamic polarization curves of 45# steel and AlCoCrFeNi2.1-WC x composite coatings in 3.5%NaCl solution at room temperature
Fig.9  Surface morphologies of AlCoCrFeNi2.1-WC x composite coatings after potentiodynamic polarization test in 3.5%NaCl solution: (a) HEA coatings; (b) WC10; (c) WC30 and (d) WC50 coatings
[1] Zhou Z Y, Zhang X, Peng X, et al. Insights into the effects of grain size variation and FCC phase formation on the oxidation behavior of laser additively manufactured BCC AlCoCrFeNi high entropy alloy [J]. Corros. Sci., 2024, 239: 112416
doi: 10.1016/j.corsci.2024.112416
[2] Guo J B, Yang S H, Zhou Z Y, et al. High-temperature oxidation behavior of laser additively manufactured AlCoCrFeNiSi high entropy alloy [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 217
郭静波, 杨守华, 周子翼 等. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为 [J]. 中国腐蚀与防护学报, 2025, 45: 217
doi: 10.11902/1005.4537.2024.313
[3] Li T X, Wang S D, Lu Y P, et al. Research progress and prospect of high-entropy alloy materials [J]. Strategic Study CAE, 2023, 25(3): 170
李天昕, 王书道, 卢一平 等. 高熵合金材料研究进展与展望 [J]. 中国工程科学, 2023, 25(3): 170
doi: 10.15302/J-SSCAE-2023.03.016
[4] Pei S B, Wan D Y, Zhou P, et al. Research progress on preparation, microstructure, oxidation-and corrosion-resistance of high-entropy alloy coatings [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 873
裴书博, 万冬阳, 周 萍 等. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 873
doi: 10.11902/1005.4537.2021.249
[5] Cui H Z, Jiang D. Research progress of high-entropy alloy coatings [J]. Acta Metall. Sin., 2022, 58: 17
doi: 10.11900/0412.1961.2021.00193
崔洪芝, 姜 迪. 高熵合金涂层研究进展 [J]. 金属学报, 2022, 58: 17
doi: 10.11900/0412.1961.2021.00193
[6] Wu D L, Wu H T, Sun H, et al. Research status and development of laser cladding high temperature protective coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 725
吴多利, 吴昊天, 孙 珲 等. 激光熔覆高温防护涂层研究现状及发展方向 [J]. 中国腐蚀与防护学报, 2023, 43: 725
doi: 10.11902/1005.4537.2023.160
[7] Wu Q F, Jia Y H, Wang Z J, et al. Rapid alloy design from superior eutectic high-entropy alloys [J]. Scr. Mater., 2022, 219: 114875
doi: 10.1016/j.scriptamat.2022.114875
[8] Li K Y, Zhai Y L, Hu X Y, et al. Research progress on high temperature corrosion of eutectic high entropy alloys [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1377
李开洋, 翟蕴龙, 胡新宇 等. 共晶高熵合金高温腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1377
doi: 10.11902/1005.4537.2024.005
[9] Huang Q Y, Li Y Z, Yang Y F, et al. Hot corrosion behavior of Pt modified AlCoCrFeNi2.1 eutectic high entropy alloy [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 115
黄勤英, 李彧卓, 阳颖飞 等. Pt改性共晶高熵合金AlCoCrFeNi2.1热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2025, 45: 115
doi: 10.11902/1005.4537.2024.134
[10] Qiu H F, Yuan X J, Luo W P, et al. Research progress in additive manufacturing of AlCoCrFeNi2.1 eutectic high-entropy alloys [J]. J. Mater. Eng., 2024, 52(1): 70
邱贺方, 袁晓静, 罗伟蓬 等. 增材制造AlCoCrFeNi2.1共晶高熵合金研究进展 [J]. 材料工程, 2024, 52(1): 70
doi: 10.11868/j.issn.1001-4381.2023.000568
[11] Du L X, Ding H, Xie Y, et al. Effect of laser energy density on microstructures and properties of additively manufactured AlCoCrFeNi2.1 eutectic high-entropy alloy [J]. Acta. Metall. Sin. (Engl. Lett.), 2025, 38: 233
doi: 10.1007/s40195-024-01783-0
[12] Wang J, Li Y, Lu B W, et al. Microstructure and properties of AlCoCrFeNi2.1 eutectic high-entropy alloy coatings fabricated by extreme high-speed and conventional laser cladding [J]. J. Therm. Spray. Technol., 2024, 33: 992
doi: 10.1007/s11666-024-01734-2
[13] Wang D, Deng S J, Chen H, et al. Effect of Y2O3 addition on the microstructure and properties of NiCoCrAlYTa coatings prepared by electrospark deposition: From a perspective of thermal physical properties [J]. Surf. Coat. Technol., 2022, 451: 129040
doi: 10.1016/j.surfcoat.2022.129040
[14] Jiang H, Li L, Wang J M, et al. Wear properties of spark plasma-sintered AlCoCrFeNi2.1 eutectic high entropy alloy with NbC additions [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 987
doi: 10.1007/s40195-023-01529-4
[15] Vyas A, Menghani J, Natu H. Influence of WC particle on the metallurgical, mechanical, and corrosion behavior of AlFeCuCrCoNi-WC x high-entropy alloy coatings [J]. J. Mater. Eng. Perform., 2021, 30: 2449
doi: 10.1007/s11665-021-05523-8
[16] Zhang A H, Jiang L, Deng H H, et al. Optimized wear behavior and oxidative strengthening mechanism of a WC reinforced high entropy composite coatings [J]. J. Mater. Res. Technol., 2025, 36: 6473
doi: 10.1016/j.jmrt.2025.04.194
[17] Liu Z Y, Li Y C, Wang Y. Microstructure and wear resistance of spherical ceramic particles reinforced FeCoNiCrMn composite coating fabricated by laser directional energy deposition [J]. J. Mater. Res. Technol., 2025, 37: 1223
doi: 10.1016/j.jmrt.2025.06.097
[18] Li Z S, Xie D Q, Liu Y, et al. Effect of WC on the microstructure and mechanical properties of laser-clad AlCoCrFeNi2.1 eutectic high-entropy alloy composite coatings [J]. J. Alloy. Compd., 2024, 976: 173219
doi: 10.1016/j.jallcom.2023.173219
[19] Li Y, Yu Y Y, Wang J, et al. Effect of WC content on the microstructure and properties of AlCoCrFeNi2.1 eutectic high entropy alloy coating prepared by ultra-high speed laser cladding technology [J]. Mater. Today Commun., 2024, 41: 110259
[20] Liu H, Zhang Y, Wang W Q, et al. Investigating particle-size dependent on microstructure evolution and wear mechanisms of WC-reinforced AlCoCrFeNi2.1 high-entropy alloy composite coatings in laser cladding [J]. Eng. Fail. Anal., 2025, 179: 109759
doi: 10.1016/j.engfailanal.2025.109759
[21] Yuan J H, Zhan Q, Huang J, et al. Decarburization mechanisms of WC-Co during thermal spraying: Insights from controlled carbon loss and microstructure characterization [J]. Mater. Chem. Phys., 2013, 142: 165
doi: 10.1016/j.matchemphys.2013.06.052
[22] Yang J X, Miao X H, Wang X B, et al. Influence of Mn additions on the microstructure and magnetic properties of FeNiCr/60%WC composite coating produced by laser cladding [J]. Int. J. Refract. Met. Hard Mater., 2014, 46: 58
doi: 10.1016/j.ijrmhm.2014.05.010
[23] An X L, Liu Q B. Effect of WC particles on microstructure and properties of high entropy alloy SiFeCoCrTi coating synthesized by laser cladding [J]. Rare Met. Mater. Eng., 2016, 45: 2424
安旭龙, 刘其斌. WC颗粒对激光熔覆高熵合金SiFeCoCrTi涂层的组织及性能的影响 [J]. 稀有金属材料与工程, 2016, 45: 2424
[24] Verma A, Singh J B, Kaushik S D, et al. Lattice parameter variation and its effect on precipitation behaviour of ordered Ni2(Cr,Mo) phase in Ni-Cr-Mo alloys [J]. J. Alloy. Compd., 2020, 813: 152195
doi: 10.1016/j.jallcom.2019.152195
[25] Zhou R, Chen G, Liu B, et al. Microstructures and wear behaviour of (FeCoCrNi)1- x (WC) x high entropy alloy composites [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 56
doi: 10.1016/j.ijrmhm.2018.03.019
[26] Long H Y, Dong Z, Lu B W, et al. Influence of WC content on microstructure and properties of laser⁃cladded FeCoNiCr high⁃entropy alloy coatings [J]. Chin. J. Lasers, 2023, 50: 2402206
龙海洋, 董 真, 卢冰文 等. WC含量对激光熔覆FeCoNiCr高熵合金涂层组织结构及性能的影响规律研究 [J]. 中国激光, 2023, 50: 2402206
[27] Miao J W, Wang M L, Zhang A J, et al. Tribological properties and wear mechanism of AlCr1.3TiNi2 eutectic high-entropy alloy at elevated temperature [J]. Acta Metall. Sin., 2023, 59: 267
苗军伟, 王明亮, 张爱军 等. AlCr1.3TiNi2共晶高熵合金的高温摩擦学性能及磨损机理 [J]. 金属学报, 2023, 59: 267
doi: 10.11900/0412.1961.2021.00589
[28] Duan H T, Du S M, Zhang Y Z, et al. Study on the friction heat rule under high-speed dry sliding conditions [J]. Lubr. Eng., 2007, 32(10): 40
段海涛, 杜三明, 张永振 等. 高速干滑动条件下钢/铜摩擦副摩擦磨损表面摩擦热规律研究 [J]. 润滑与密封, 2007, 32(10): 40
[29] Listyawan T A, Agustianingrum M P, Na Y S, et al. Improving high-temperature oxidation behavior by modifying Al and Co content in Al-Co-Cr-Fe-Ni high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 129: 115
doi: 10.1016/j.jmst.2022.04.028
[30] Xie Y, Su C, Huang Z X, et al. Improvement of oxidation resistance and alumina regrowth ability of Ni-30Cr-5Al alloy without and with Y: Nanocrystallization effect [J]. Corros. Sci., 2023, 223: 111472
doi: 10.1016/j.corsci.2023.111472
[31] Lu S S, Zhou J S, Wang L Q, et al. Corrosion resistance and elevated-temperature wear properties of laser cladding Ni-Co composite coating on ductile cast iron [J]. China Surf. Eng., 2022, 35(3): 122
路世盛, 周健松, 王凌倩 等. 球墨铸铁表面激光熔覆Ni-Co复合涂层的耐腐蚀及高温摩擦学性能 [J]. 中国表面工程, 2022, 35(3): 122
[32] Duan X T, Han T Z, Guan X, et al. Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi2.1 with precipitates [J]. J. Mater. Sci. Technol., 2023, 136: 97
doi: 10.1016/j.jmst.2022.07.023
[1] HU Hongyu, WANG Yuefei, YAN Haixin, SHI Jianjun, WU Duoli. Research Progress on Laser Cladding Anti-corrosion and Wear-resistant Coatings for Hydraulic Support Column[J]. 中国腐蚀与防护学报, 2026, 46(1): 25-36.
[2] ZHOU Li, CAO Xiaodie, LAI Youbin, DING Wangwang, WEI Boxin, WU Jiajun. Research Progress in Influence of Heat Treatment on Corrosion Behavior of Additive Manufactured Parts[J]. 中国腐蚀与防护学报, 2026, 46(1): 37-48.
[3] LIU Hailong, WANG Li, ZHAO Weiguo, HAN Jiayu, WANG Qingsong, LONG Jiayi, HE Xing, GAO Lili, WANG Hua, HU Ping. Preparation and High-temperature Oxidation Resistance of Laser Clad Si-ZrB2-Ti-Cr Multi-component Coatings on Mo-alloy[J]. 中国腐蚀与防护学报, 2026, 46(1): 155-164.
[4] JI Yunhan, WANG Qinying, ZHENG Jie, LI Yixuan, XI Yuchen, DONG Lijin, ZHANG Yangfei, BAI Shulin. Microstructure and Tribocorrosion Behavior of Laser Cladding Coating of a Non-magnetic Drill Collar Stainless Steel[J]. 中国腐蚀与防护学报, 2026, 46(1): 175-185.
[5] WANG De, ZHANG Fan, WANG Xingqi, ZHANG Hexin, ZHAO Chengzhi, YANG Yange. Long-term Corrosion Resistance of Carbon Steel and Al-alloy with Single Component Fluorocarbon Modified Epoxy Coating[J]. 中国腐蚀与防护学报, 2025, 45(6): 1549-1562.
[6] ZHOU Hongtao, WANG Linlin, WANG Min, WANG Ping, MA Yingche. Influence of Al-content on Corrosion Resistance of Alumina-forming Austinite Steel in Molten Pb-Bi Alloy Eutectic[J]. 中国腐蚀与防护学报, 2025, 45(6): 1563-1574.
[7] WANG Lifang, SHANG Mengchao, GAO Xiyu, LIU Guichang, SUN Wen. Effect of Inherent Films Resulted from Manufacturing Process on Corrosion of B30 Cu-Ni Alloy[J]. 中国腐蚀与防护学报, 2025, 45(6): 1575-1588.
[8] HUANG Zebang, LIU Guangming, FAN Wenxue, XU Ruizhong, ZHU Yanbin, LIU Chenhui. Effect of Passivation Time on Corrosion Resistance of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(6): 1741-1747.
[9] HE Yan, LIU Yan, TIAN Hua, CHEN Ye. Effect of Low Temperature Diffusion Pretreatment on Precipitation of Phases During Post-aging Treatment for B-containing S31254 Super Austenitic Stainless Steel and its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2025, 45(6): 1773-1778.
[10] TONG Xiangyu, XU Weichen, WANG Xiutong, WANG Youqiang, DUAN Jizhou. Summary on Effect of Weling Techniques on Microstructure and Mechanical Properties of TC4 Ti-alloy Weld Joints[J]. 中国腐蚀与防护学报, 2025, 45(5): 1161-1174.
[11] GUO Yaowei, AI Shimin, FANG Daran, LIN Xiaoping, YANG Lianwei, ZHENG Zhehao. Microstructure and Corrosion Resistance of High-pressure Solidified Mg-xAl (x = 3, 5, 7, 9, 12) Alloys[J]. 中国腐蚀与防护学报, 2025, 45(5): 1265-1276.
[12] FENG Yuqin, GUO Tonghan, YU Weihan, WU Wei, ZHANG Daquan. Influence of Sb on Corrosion Behavior of High-strength Structural Steels Exposed to Atmosphere at East Coast Region[J]. 中国腐蚀与防护学报, 2025, 45(5): 1300-1308.
[13] LI Ping, SHI Huijie, PEI Jibin, WANG Zijian, CAO Tieshan, CHENG Congqian, ZHAO Jie. Impact of Nanosecond Pulsed Laser Irradiation on Electrochemical Corrosion Behavior of 17-4PH Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(5): 1417-1424.
[14] ZHANG Xiongbin, DANG En, YU Xiaojing, TANG Yufei, ZHAO Kang. Research Status and Progress on Corrosion Performance of Super Martensitic Stainless Steel for Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[15] SUN Fanghong, REN Yanjie, SONG Wenqing. Research Status and Progress of Laser Clad Coatings on 42CrMo Steel[J]. 中国腐蚀与防护学报, 2025, 45(4): 849-858.
No Suggested Reading articles found!