Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (6): 1741-1747    DOI: 10.11902/1005.4537.2025.023
Current Issue | Archive | Adv Search |
Effect of Passivation Time on Corrosion Resistance of 304 Stainless Steel
HUANG Zebang1, LIU Guangming1(), FAN Wenxue2, XU Ruizhong3, ZHU Yanbin1, LIU Chenhui1
1 Jiangxi Provincial Key Laboratory of Lightweight Composite Materials, Nanchang Hangkong University, Nanchang 330063, China
2 China Anhui Dingwang Environmental Protection Material Technology Co. Ltd. , Xuancheng 242000, China
3 College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Cite this article: 

HUANG Zebang, LIU Guangming, FAN Wenxue, XU Ruizhong, ZHU Yanbin, LIU Chenhui. Effect of Passivation Time on Corrosion Resistance of 304 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1741-1747.

Download:  HTML  PDF(9098KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of passivation time of 304 stainless steel in nitrate and sulfuric acid solution on its corrosion resistance was assessed by means of electrochemical methods, in terms of the optimal passivation time, and the corrosion morphology of polarized steel. The results demonstrate that the passivation time has a significant effect on the corrosion resistance of 304 stainless steel. With the increasing passivation time, the corrosion resistance first increases and then decreases, and the corrosion resistance is the best when passivation time is 70 min. In comparison with the 70-minute passivation, the corrosion current density Icorr of the passivated film at 90 min increased from 7.032 × 10-7 to 3.630 × 10-6 A·cm-2, the passivated film resistance Rf decreased from 5.514 × 104 to 1.024 × 104 Ω·cm2, the doners density ND increased from 2.580 × 1020 to 11.47 × 1020 cm-3 and the corrosion resistance decreased.

Key words:  304 stainless steel      passivation time      passivation film      electrochemical test      corrosion resistance     
Received:  15 January 2025      32134.14.1005.4537.2025.023
ZTFLH:  TG178  
Fund: National Natural Science Foundation of China(51961028)
Corresponding Authors:  LIU Guangming, E-mail: gemliu@126.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.023     OR     https://www.jcscp.org/EN/Y2025/V45/I6/1741

Fig.1  Metallographic structure of 304 stainless steel (a) and magnified image of the region 1 marked in Fig.1a (b)
Fig.2  Diagram of electrochemical corrosion pool
Fig.3  Polarization curves of 304 stainless steel passivated at 60 oC for different time
tminIcorrA·cm-2EcorrVEbVΔEVβAV·dec-1βCV·dec-1
102.531 × 10-6-0.272-0.0980.1744.1905.037
302.348 × 10-6-0.237-0.0470.1904.8085.390
501.091 × 10-6-0.2160.2060.4224.6635.144
707.032 × 10-7-0.2150.3090.5245.0555.585
903.630 × 10-6-0.324-0.1990.1254.7055.624
Table 1  Fitting parameters of polarization curves in Fig.3
Fig.4  Nyquist (a) and Bode (b) plots of 304 stainless steel after passivation at 60 oC for different time
Fig.5  Equivalent circuit model for fitting electrochemical impedance spectra
t / minRs / Ω·cm2Y / Ω-1·cm-2·S nnRf / Ω·cm2
102.5485.690 × 10-60.73351.317 × 104
303.2691.031 × 10-50.76371.405 × 104
508.7948.217 × 10-60.72344.401 × 104
704.1473.003 × 10-60.81415.514 × 104
905.4351.574 × 10-50.70291.024 × 104
Table 2  Fitting parameters of electrochemical impedance spectra in Fig.4
Fig.6  Mott-Schottky curves of 304 stainless steel after passivation at 60 oC for different time
t / minND / cm-3Efb / V (SCE)
107.669 × 1020-0.460
305.751 × 1020-0.445
505.503 × 1020-0.429
702.580 × 1020-0.383
901.147 × 1021-0.471
Table 3  Fitting parameters of Mott-Schottky curves in Fig.6
Fig.7  SEM morphologies of 304 stainless steel after polarization (a) and enlarged image of the region 2 marked in Fig.7a (b)
Fig.8  SEM morphologies of 304 stainless steel after polarization (a) and enlarged image of the circular area marked in Fig.8a (b)
[1] Bo X T. Development trend of stainless steels [J]. Heat Treat., 2007, 22(4): 5
(薄鑫涛. 不锈钢钢种发展的一些动向 [J]. 热处理, 2007, 22(4): 5)
[2] Nie J W, Gong B K, Wang L, et al. Development of stainless steel passivation [J]. Total Corros. Control, 2020, 34(9): 12
(聂继伟, 宫本奎, 王 磊 等. 不锈钢钝化的发展 [J]. 全面腐蚀控制, 2020, 34(9): 12)
[3] Ryan M P, Williams D E, Chater R J, et al. Why stainless steel corrodes [J]. Nature, 2002, 415: 770
[4] Olugbade T, Liu C, Lu J. Enhanced passivation layer by Cr diffusion of 301 stainless steel facilitated by SMAT [J]. Adv. Eng. Mater., 2019, 21: 1900125
[5] Yang S L, Li F T, Deng Y, et al. Effect of fluoride ions on corrosion behavior of Incoloy825 alloy in acidic high chloride solution [J]. Welded Pipe Tube, 2023, 46(10): 8
(杨淑莉, 李富天, 邓 毅 等. 酸性高氯介质中氟离子对Incoloy825合金腐蚀行为的影响 [J]. 焊管, 2023, 46(10): 8)
[6] Freire L, Carmezim M J, Ferreira M G S, et al. The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study [J]. Electrochim. Acta, 2010, 55: 6174
[7] Li Y, Liu G M, Li F T, et al. Corrosion behavior of 2507 duplex stainless steel in acidic and high chlorine environments [J]. China Surf. Eng., 2024, 37(2): 91
(李 玉, 刘光明, 李富天 等. 2507双相不锈钢在酸性高氯环境下的腐蚀行为 [J]. 中国表面工程, 2024, 37(2): 91)
[8] Huang X, Zhang J, Yu L, et al. Study on corrosion resistance passivation treatment and material selection of stainless steel [J]. Aviat. Precis. Manuf. Technol., 2022, 58(5): 56
(黄 鑫, 张 娟, 喻 岚 等. 不锈钢耐腐蚀钝化处理及选材 [J]. 航空精密制造技术, 2022, 58(5): 56)
[9] Parsapour A, Khorasani S N, Fathi M H. Corrosion behavior and biocompatibility of hydroxyapatite coating on H2SO4 passivated 316L SS for human body implant [J]. Acta Metall. Sin. (Engl. Lett.), 2013, 26: 409
[10] Dhirendra, Sanyal B. Effect of potassium dichromate on the passivation of stainless steel (AISI 321) in sulphuric acid [J]. Br. Corros. J., 1980, 15: 81
[11] Yi G H, Zheng D J, Song G L. Influence of acid pickling on morphology, optical parameters and corrosion resistance of 316L stainless steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 461
(伊光辉, 郑大江, 宋光铃. 酸洗对316L不锈钢表面形貌、耐蚀性能及表面光学常数的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 461)
[12] Javidi M, Abadeh H K, Yazdanpanah H R, et al. Synergistic effect of temperature, concentration and solution flow on corrosion and passive film of austenitic SS 304L and 316L in concentrated sulfuric acid [J]. Corros. Sci., 2024, 237: 112306
[13] Gomez-Duran M, Macdonald D D. Stress corrosion cracking of sensitized Type 304 stainless steel in thiosulfate solution: I. Fate of the coupling current [J]. Corros. Sci., 2003, 45: 1455
[14] Wang C, Jiang F, Wang F H. Passivation of 304 stainless steels by nitrate and sulfuric acid solution [J]. Corros. Sci. Prot. Technol., 2003, 15: 334
(王 成, 江 峰, 王福会. 304不锈钢在硝酸盐及硫酸溶液中的钝化 [J]. 腐蚀科学与防护技术, 2003, 15: 334)
[15] Zhang C Y. The effect of nitric passivation on corrosion resistance of ZG06Cr13Ni4Mo low-carbon martensitic stainless steel [D]. Hefei: University of Science and Technology of China, 2020
(张春雨. 硝酸钝化对ZG06Cr13Ni4Mo低碳马氏体不锈钢耐蚀性能的影响 [D]. 合肥: 中国科学技术大学, 2020)
[16] Guo Y J, He C L, Cai Q K, et al. Electrical properties of passive film formed on stainless steel in sulphuric acid [J]. Mater. Prot., 1999, 32(7): 1
(国玉军, 贺春林, 才庆魁 等. 不锈钢在硫酸中形成的钝化膜的导电性能 [J]. 材料保护, 1999, 32(7): 1)
[17] Yue Y Y, Liu C J, Jiang M F. Evolution of passive film on 304 stainless steel during nitric acid passivation [J]. Steel Res. Int., 2022, 93: 2200026
[18] An Y Q, Wang X, Cui Z Y. Effect of nitric acid passivation on critical Cl- concentration for corrosion of 304 stainless steel in simulated concrete pore solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 804
(安易强, 王 昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 804)
[19] He C, Wang X X, Li F T, et al. Electrochemical corrosion behavior of 304 stainless steel in Korla soil leaching solution at different pH values [J]. Electroplat. Finish., 2022, 41: 1595
(何 成, 王欣欣, 李富天 等. 304不锈钢在不同pH的库尔勒土壤浸出液中的腐蚀电化学行为 [J]. 电镀与涂饰, 2022, 41: 1595)
[20] Liu X, Yan B H, Liu Y R. Corrosion behavior of 304 stainless steel in dilute sulfuric acid [J]. Sichuan Metall., 2017, 39(5): 57
(刘 欣, 闫秉昊, 刘友荣. 304不锈钢在稀硫酸溶液中的腐蚀行为探讨 [J]. 四川冶金, 2017, 39(5): 57)
[21] Ye C. Study on the Pitting behavior of 304 stainless steel by electrochemical methods [D]. Nanchang: Nanchang Hangkong University, 2014
(叶 超. 304不锈钢点蚀行为的电化学研究 [D]. 南昌: 南昌航空大学, 2014)
[22] Fan G W, Zhang S L, Qin L Y. Electrochemical impedance spectroscopy of 304 stainless steels during intergranular corrosion [J]. Res. Stud. Foundry Equip., 2007, (3): 12
(范光伟, 张寿禄, 秦丽雁. 304不锈钢晶间腐蚀发展过程的阻抗谱分析 [J]. 铸造设备研究, 2007, (3): 12)
[23] Zhang Y, Zhang X, Chen S Y, et al. Effect of phosphoric acid concentration on corrosion resistance and passivation film properties of 316L stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 819
(张 媛, 张 弦, 陈思雨 等. 磷酸浓度对316L不锈钢耐蚀性及钝化膜特性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 819)
[24] Cui Z Y, Wang L W, Ni H T, et al. Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates [J]. Corros. Sci., 2017, 118: 31
[25] Li J F, Jia Z Q, Li C X, et al. Exfoliation corrosion of 7150 Al alloy with various tempers and its electrochemical impedance spectroscopy in EXCO solution [J]. Mater. Corros., 2009, 60: 407
[26] Mohammadi F, Nickchi T, Attar M M, et al. EIS study of potentiostatically formed passive film on 304 stainless steel [J]. Electrochim. Acta, 2011, 56: 8727
[27] Liu S H, Zhu X M, Zhang L, et al. Electronic characteristics of passivation film of Fe24Mn4Al5Cr alloy [J]. J. Dalian Jiaotong Univ., 2021, 42(4): 62
(刘思航, 朱雪梅, 张 琳 等. Fe24Mn4Al5Cr合金钝化膜的电子特性研究 [J]. 大连交通大学学报, 2021, 42(4): 62)
[28] Liang L, Huang Y R. Effect of H2SO4 concentration on the passive film on 00Cr19Mo2NbTi ferrite stainless steel [J]. J. Shenyang Norm. Univ. (Nat. Sci. Ed.), 2020, 38(2): 140
(梁 琳, 黄艳茹. H2SO4浓度对00Cr19Mo2NbTi铁素体不锈钢钝化膜的影响 [J]. 沈阳师范大学学报(自然科学版), 2020, 38(2): 140)
[29] Feng Z C, Cheng X Q, Dong C F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy [J]. Corros. Sci., 2010, 52: 3646
[30] Zhang H, Du N, Zhou W J, et al. Effect of Fe3+ on pitting corrosion of stainless steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 517
(张 浩, 杜 楠, 周文杰 等. 模拟海水溶液中Fe3+对不锈钢点蚀的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 517)
[1] WANG De, ZHANG Fan, WANG Xingqi, ZHANG Hexin, ZHAO Chengzhi, YANG Yange. Long-term Corrosion Resistance of Carbon Steel and Al-alloy with Single Component Fluorocarbon Modified Epoxy Coating[J]. 中国腐蚀与防护学报, 2025, 45(6): 1549-1562.
[2] ZHOU Hongtao, WANG Linlin, WANG Min, WANG Ping, MA Yingche. Influence of Al-content on Corrosion Resistance of Alumina-forming Austinite Steel in Molten Pb-Bi Alloy Eutectic[J]. 中国腐蚀与防护学报, 2025, 45(6): 1563-1574.
[3] WANG Lifang, SHANG Mengchao, GAO Xiyu, LIU Guichang, SUN Wen. Effect of Inherent Films Resulted from Manufacturing Process on Corrosion of B30 Cu-Ni Alloy[J]. 中国腐蚀与防护学报, 2025, 45(6): 1575-1588.
[4] RUAN Zhibang, WEI Shixuan, WANG Shupeng, LV Zhengping, LI Gesheng, LI Yizhou. Inhibition Effect of Imidazoline Phosphate on Galvanic Corrosion of 7075 Al-alloy in Neutral NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(6): 1734-1740.
[5] HE Yan, LIU Yan, TIAN Hua, CHEN Ye. Effect of Low Temperature Diffusion Pretreatment on Precipitation of Phases During Post-aging Treatment for B-containing S31254 Super Austenitic Stainless Steel and its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2025, 45(6): 1773-1778.
[6] TONG Xiangyu, XU Weichen, WANG Xiutong, WANG Youqiang, DUAN Jizhou. Summary on Effect of Weling Techniques on Microstructure and Mechanical Properties of TC4 Ti-alloy Weld Joints[J]. 中国腐蚀与防护学报, 2025, 45(5): 1161-1174.
[7] GUO Yaowei, AI Shimin, FANG Daran, LIN Xiaoping, YANG Lianwei, ZHENG Zhehao. Microstructure and Corrosion Resistance of High-pressure Solidified Mg-xAl (x = 3, 5, 7, 9, 12) Alloys[J]. 中国腐蚀与防护学报, 2025, 45(5): 1265-1276.
[8] FENG Yuqin, GUO Tonghan, YU Weihan, WU Wei, ZHANG Daquan. Influence of Sb on Corrosion Behavior of High-strength Structural Steels Exposed to Atmosphere at East Coast Region[J]. 中国腐蚀与防护学报, 2025, 45(5): 1300-1308.
[9] LI Ping, SHI Huijie, PEI Jibin, WANG Zijian, CAO Tieshan, CHENG Congqian, ZHAO Jie. Impact of Nanosecond Pulsed Laser Irradiation on Electrochemical Corrosion Behavior of 17-4PH Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(5): 1417-1424.
[10] ZHANG Xiongbin, DANG En, YU Xiaojing, TANG Yufei, ZHAO Kang. Research Status and Progress on Corrosion Performance of Super Martensitic Stainless Steel for Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[11] ZHOU Qianyong, LAI Yang, LI Qian. Effect of Pickling Process on Corrosion Resistance of Double Cold-reduced Tinplate with Different Tin Coating Masses[J]. 中国腐蚀与防护学报, 2025, 45(4): 939-946.
[12] LI Mao, DENG Ke, CHEN Yanxiang, LIU Zhonghao, LI Shang, GUO Yuting, DONG Xuanpu, CAO Huatang. Influence of N2 Flow and Target-substrate Distance on Microstructure and Corrosion Resistance Properties of Multi-arc Ion Plated AlSiN Nano-composite Coatings[J]. 中国腐蚀与防护学报, 2025, 45(4): 1041-1050.
[13] CHEN Yuqiang, RAN Guanglin, LU Dingding, HUANG Lei, ZENG Liying, LIU Yang, ZHI Qian. Effect of Cyclic Strengthening on Corrosion Behavior of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1051-1060.
[14] RAN Renhao, SHAN Huilin, ZHANG Pengjie, WANG Dongmei, SI Jiajia, XU Guangqing, LV Jun. Preparation and Corrosion Resistance of Surface Mg-alloying NdFeB Magnets[J]. 中国腐蚀与防护学报, 2025, 45(4): 1117-1126.
[15] YUE Rui, LIU Yongyong, YANG Lijing, ZHU Xinglong, CHEN Quanxin, A Naer, ZHANG Qingke, SONG Zhenlun. Effect of Laser Surface Remelting on Microstructure and Properties of Biodegradable Zn-0.4Mn Alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1127-1134.
No Suggested Reading articles found!